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ABSTRACT 1 

This study presents a framework to employ naturalistic driving study (NDS) data to understand 2 

and predict crash risk at a disaggregate trip level accommodating for the influence of trip 3 

characteristics (such as trip distance, trip proportion by speed limit, trip proportion on urban/rural 4 

facilities) in addition to the traditional crash factors. Recognizing the rarity of crash occurrence in 5 

NDS data, the research employs a matched case-control approach for preparing the estimation 6 

sample. The study also conducts an extensive comparison of different case to control ratios 7 

including 1:4, 1:9, 1:14, 1:19, and 1:29. The model parameters estimated with these control ratios 8 

are reasonably similar (except for the constant). Employing the 1:9 sample, a multi-level random 9 

parameters binary logit model was estimated where multiple forms of unobserved variables were 10 

tested including (a) common unobserved effects for each case-control panel, (b) common 11 

unobserved factors affecting the error margin in the trip distance variable, and (c) random effects 12 

for all independent variables. The estimated model was calibrated by modifying the constant 13 

parameter to generate a population conforming crash risk model. The calibrated model was 14 

employed to predict crash risk of trips not considered in model estimation. This study is a proof of 15 

concept that NDS data can be used to predict trip level crash risk and can be used by future 16 

researchers to develop crash risk models.  17 

 18 

Keywords: NDS data, Crash rarity, Crash risk model; Case-control approach; Unobserved effects.  19 
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INTRODUCTION 1 

Given the significant emotional, economic, and social costs of traffic crashes, “Vision Zero”, a 2 

movement in which communities set a goal to eliminate traffic fatalities and severe injuries within 3 

a specified timeframe, has been conceptualized (1). Several urban regions - including Orlando, 4 

Tampa, New York City, Chicago, Austin, Denver, and Los Angeles - have committed to meeting 5 

the goals of the Vision Zero movement (1). A major component of achieving Vision Zero goals 6 

includes developing statistical and econometric models to understand the underlying causes of 7 

crashes and to identify strategies for crash prevention and crash consequence mitigation.  8 

Traditional safety research can be broadly classified along two directions – crash frequency 9 

and severity analysis. The first direction of research focuses on understanding the factors 10 

contributing to the number of crashes on a facility type in a specific time-period (2; 3; 4). The 11 

second direction of research examines factors affecting crash consequence (usually injury severity) 12 

conditional on the occurrence of a crash (5; 6; 7). The evolution of the safety field along these two 13 

primary research directions is based on how crash data is typically recorded –compiled by police 14 

or medical professionals. Traditional crash data has been instrumental in understanding the 15 

influence of various factors drawn from driver demographics, vehicle characteristics, roadway 16 

characteristics, crash characteristics, environmental factors on crash frequency and severity. 17 

However, the data does not allow us to examine the underlying cause of crash. Crash frequency 18 

models simply aggregate the crashes on a facility and are useful to examine the role of roadway 19 

environment in affecting crashes. On the other hand, the crash severity models focus on the crash 20 

consequence without having any information on the trip that resulted in the crash. As previously 21 

stated, this limitation is mainly a consequence of the absence of such detailed trip data.  22 

The paradigm of crash data collection however can potentially undergo a significant 23 

change with the advent of Naturalistic Driving Studies (NDS).  Naturalistic driving data is obtained 24 

from drivers willing to participate in a data collection exercise through a host of sensors that are 25 

placed in vehicles recording driver behavior (such as on-task behavior, eye movement) and their 26 

actions (such as speed, acceleration) in real time. The first large scale NDS was conducted in the 27 

Northern Virginia and Washington D.C. area monitoring 100 cars for about a year (8). More 28 

recently, another naturalistic driving study titled the Second Strategic Highway Research Program 29 

(SHRP2) was conducted, with over 3,500 participants from six data collection sites across the 30 

United States, recording 1,951 crashes and 6,956 near-crashes (9). The ability to record trips 31 

involving crashes alongside those that do not include crashes allows researchers to compare driver 32 

behaviors and environmental factors in crash and non-crash trips and identify those factors that are 33 

more frequent in crash trips. In this study a trip starts when the car is turned on and ends when the 34 

car turns off. The NDS data allows for understanding the underlying timeline of the crash and 35 

account for driver behavior (as opposed to simply focusing on driver demographics). Thus, using 36 

NDS data, in theory, analysts can understand crash occurrence (yes/no at a trip level) and crash 37 

consequence (for trips involved in a crash) as a disaggregate event.  38 

In this context, the current study makes two important contributions to safety literature. 39 

First, we present a framework to employ NDS data to understand and predict crash risk at a 40 

disaggregate trip level accommodating for the influence of trip characteristics (such as trip 41 

distance, trip proportion by speed limit, trip proportion on urban/rural facilities) in addition to the 42 

traditional crash factors. Second, we employ a rigorous case-control study design for 43 

understanding trip level crash risk. NDS data collection is not primarily geared towards 44 

understanding potential crash occurrence and/or severity. Given the rarity of crashes, even an 45 

exhaustive exercise as SHRP2 produced only 1,951 crash events from 5,512,900 trips (10).  Hence, 46 
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trips with crashes represent only a small sample of the trips database. A binary outcome model of 1 

crash risk – whether a trip will result in a crash or not – will be extremely challenging to estimate 2 

with the small sample share. The sample share challenge observed in the trip level crash risk has 3 

been documented in transportation safety literature in the context of crash/near crash events in 4 

naturalistic driving studies (See Guo, 2019 (11) for a detailed review) and real-time crash risk 5 

models developed in safety literature (12; 13). The current research will draw on earlier case-6 

control literature in transportation safety to customize the case control study design for our 7 

analysis.  8 

 9 

EARLIER RESEARCH  10 

Our review of earlier research focused on two dimensions: (1) studies employing naturalistic 11 

driving data to draw insights on factors affecting crash occurrence and (2) research methods 12 

employed for analysis.  13 

Several studies have employed naturalistic data for safety analysis. The most commonly 14 

employed NDS datasets include 100-Car NDS (14; 15) or the SHRP2 NDS (16; 17; 18). The 15 

dimensions affecting crash /near crash risk examined in these NDS studies include various driver 16 

behaviors such as driver inattention (14; 16), glance behavior (19), aggressive/risky driving and 17 

speeding (15; 20; 21; 22) and secondary task involvement  (18; 23). Studies using NDS data have 18 

also examined crash/near crash risk based on driver characteristics such as age (22; 24) and history 19 

of sleep disorders (25). Studies have also considered non-driver related factors such as lighting 20 

conditions (23), pavement surface condition (23), and vehicle kinematics (26). Apart from the two 21 

major NDS studies, a small number of studies examined role of driver actions in crash/near crash 22 

events for commercial drivers (27), and influence of behavioral and environmental factors present 23 

prior to a crash for teenage drivers (28).  24 

Analysis of NDS data is conducted using two main types of case-control study designs: (a) 25 

case-cohort design and (b) case-crossover design (11). In the case-cohort design, control periods 26 

are randomly selected for each driver proportional to their driving time or mileage. In the case-27 

crossover design, controls for an event are selected using the same subject to account for subject 28 

specific confounding factors. The analysis framework for crash/near crash event is the logistic 29 

regression model. However, to accommodate for the unobserved factors associated with the same 30 

driver or other common elements, multi-level random parameter logit regression approaches are 31 

employed. An important element of discussion in case-control study design is the ratio of cases 32 

and controls. Mittleman et al., 1995 (29) suggested a 1:4 ratio for case-crossover studies. Most of 33 

the existing literature in safety employ a ratio ranging from 1:1 to 1:10. However, it is important 34 

that an examination of stable ratio of cases and controls is conducted for each empirical context. 35 

Furthermore, even if the parameters are unbiased, model estimates from case-control studies 36 

cannot be used to calculate risk directly without employing corrections for the constant (see Zhang 37 

and Kai, 1998 (30) for a detailed discussion). The case-control model outputs can only be used to 38 

calculate the odds ratio (31). The application of case-control model outputs is limited without the 39 

constant correction. In summary, the current study develops a case-cohort study design for trip 40 

level crash risk analysis. We will rigorously examine the impact of control group sample size on 41 

the variable parameters and identify an appropriate case to control ratio for our analysis. The 42 

proposed model for the estimation will also accommodate for the presence of any unobserved 43 

factors on trip level crash risk. It is possible that all the control group records matched with the 44 

case might have some common unobserved factors influencing crash risk. To accommodate for 45 

this potential unobserved heterogeneity, a multi-level random parameters binary logit model 46 
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structure is employed in our analysis. The estimated model system is used to generate crash risk 1 

for a hold-out sample of data records by correcting the estimated case-cohort model for the general 2 

trip population.  3 

 4 

DATA PREPARATION 5 

The data for our analysis is drawn from the SHRP2 NDS data. The data provided information on 6 

1,951 trips that resulted in a crash and a random sample of 1,000,000 trips with no crash (from the 7 

full sample of 5.5 million trips). The data included trip data (such as start and end time, day of 8 

week, facility types and speeds, max acceleration and deceleration), driver demographics (such as 9 

age, gender, education, income, and average annual mileage), crash event details (such as location 10 

details, collision type, crash severity, driver impairments, and weather). The list of variables 11 

examined in our study is summarized in Table 1. Several variables, such as total travel time, 12 

departure time of the trip, and the day of the week, were excluded from consideration due to a 13 

large number of missing data points for those variables. Among the 1,951 trips resulting in a crash, 14 

814 of those crashes were categorized as “low risk tire strike” and were excluded from the analysis, 15 

leaving 1,137 crashes to be analyzed. After further filtering the data, removing trips that had 16 

missing driver or trip information, we ended up with 928 trips resulting in a crash and 714,579 17 

trips with no crash. 18 

 19 

TABLE 1: Summary of SHRP2 NDS Variables 20 

Categorical Variables 

Variable Name Variable Description Share of Category 

Age 16-19 Driver age is between 16 and 19 0.023 

Age 20-24 Driver age is between 20 and 24 0.064 

Age 25-29 Driver age is between 25 and 29 0.081 

Age 30-74 Driver age is between 30 and 74 0.758 

Age > 74 Driver age is greater than 74 0.074 

Avg. annual miles 

< 10,000 

Driver average annual mileage of less than 

10,000 mi/yr  
0.229 

Avg. annual miles 

10,000 to 25,000 

Driver average annual mileage between 10,000 

and 25,000 mi/yr  
0.637 

Avg. annual miles 

> 25,000 

Driver average annual mileage of greater than 

25,000 mi/yr  
0.134 

Full-time worker Driver is full time worker 0.480 

Part-time worker Driver is part time worker 0.190 

Not working 

outside the home 
Driver does not work outside the home 0.330 

Male Driver is male 0.490 

Female Driver is female 0.510 

Previous Crash Driver has been in a crash in the last 3 years 0.260 

No Previous Crash Driver has not been in a crash in the last 3 years 0.740 

Continuous Variables 

Variable Name Variable Description Min. Max. Mean Std. Dev. 

Years driving 
Number of years driver has 

been driving 
0 74 33.132 17.732 
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Distance 

Straight line distance in miles 

between the start point and the 

end point of the trip 

0 577.135 7.531 14.869 

Percent Rural 
Percentage of the trip on rural 

roads 
0 1 0.105 0.196 

Percent Urban 
Percentage of the trip on urban 

roads 
0 1 0.550 0.285 

Percent < 30 mph 
Percentage of the trip where the 

speed was < 30 mph 
0 1 0.388 0.313 

Percent > 70 mph 
Percentage of the trip where the 

speed was > 70 mph 
0 1 0.018 0.089 

Mean MPH 
Mean speed of the vehicle in 

mph over the full trip 
0 88.487 28.630 12.276 

Max MPH 
Maximum speed of the vehicle 

in mph 
0 93.206 46.879 17.558 

Max acceleration 

Maximum longitudinal 

acceleration value during the 

trip 

-1.367 3.210 0.287 0.096 

Max deceleration 

Maximum longitudinal 

deceleration value during the 

trip 

-3.466 0.620 -0.325 0.111 

Max lateral accel. 
Maximum lateral acceleration 

value during the trip 
-0.238 3.483 0.381 0.131 

Max turn rate 
Maximum turn rate turing the 

trip 
344.057 399.990 26.673 10.216 

 

Case Control Design 1 

In case-control studies, case outcomes of interest (trips with a crash) are matched with a select 2 

number of control outcomes (trips without a crash). In our study we adopt the matched case-control 3 

approach. We selected the independent variables driver age, driver gender, and trip distance within 4 

a 20% margin for our matching exercise. With these criteria, we did not find enough controls for 5 

a small sample of crash trips. Hence, we restricted our analyses to 914 crash trips (cases). For 6 

testing different case to control ratios, we create samples with the following case to control ratios 7 

1:4, 1:9, 1:14, 1:19 and 1:29.  8 

 9 

EMPIRICAL ANALYSIS 10 

 11 

Parameter Variation Across Various Samples 12 

The first part of our model development exercise was focused on parameter variability across the 13 

various samples. The binary logistic model was estimated for the largest sample testing several 14 

variable specifications based on the variables described in the data preparation section. After a 15 

final specification was obtained for the 1:29 sample, the specification was estimated across all 16 

other samples. The final specification of the model was based on removing the statistically 17 

insignificant variables in a systematic manner based on the 90% confidence level. A summary of 18 

the model estimates across all control samples is presented in Table 2. A cursory examination of 19 

the parameters indicates reasonable agreement across all samples. The reader would note that the 20 



Hoover, Bhowmik, Yasmin and Eluru  7 

constant parameter across all models varies substantially. The variation across the constant 1 

parameter reflects the case to control sample share in the sample. Therefore, as the case to control 2 

ratio reduces, a reduction in the magnitude of the constant parameter is observed. While this is 3 

quite encouraging, the visual comparison does not indicate if the difference across parameters for 4 

all the samples is within statistically acceptable levels.  5 

 6 

TABLE 2: Crash Risk Estimates 7 

Parameters 1:4 Ratio 1:9 Ratio 1:14 Ratio 1:19 Ratio 1:29 Ratio 

Constant 
-1.589 

(0.174) 

-2.390 

(0.164) 

-2.816 

(0.160) 

-3.144 

(0.159) 

-3.533 

(0.152) 

Trip Variables 

% Trip < 30 mph 
0.383 

(0.191) 

0.352* 

(0.180) 

0.3414* 

(0.176) 

0.363 

(0.176) 

0.429 

(0.167) 

% Trip > 70 mph 
-0.792 

(0.375) 

-0.621* 

(0.348) 

-0.606* 

(0.337) 

-0.698 

(0.336) 

-0.004** 

(0.004) 

Ln(Distance + 1) 
0.170 

(0.057) 

0.144 

(0.053) 

0.149 

(0.052) 

0.153 

(0.052) 

0.103 

(0.049) 

% Trip on urban roads 
-0.54 

(0.14) 

-0.51 

(0.13) 

-0.54 

(0.13) 

-0.53 

(0.13) 

-0.48 

(0.12) 

Driver Demographics 

Drives < 10,000 mi/yr 
0.384 

(0.081) 

0.384 

(0.076) 

0.398 

(0.075) 

0.398 

(0.074) 

0.386 

(0.073) 

Drives > 25,000 mi/yr 
0.362 

(0.121) 

0.388 

(0.114) 

0.364 

(0.111) 

0.372 

(0.110) 

0.326 

(0.109) 

Full-time worker 
-0.257 

(0.082) 

-0.178 

(0.078) 

-0.204 

(0.076) 

-0.196 

(0.076) 

-0.199 

(0.075) 
*   Variable insignificant at 95% significance level; ** Variable insignificant at 90% significance level 8 
 9 

To compare the parameters across the models, we employ the 1:29 control sample as the 10 

benchmark and evaluate if the parameters for other models are statistically different relative to this 11 

sample. Towards making the comparison, a revised Wald test statistic relative to the 1:29 sample 12 

is generated as follows: 13 

Parameter test statistic = 𝑎𝑏𝑠 [
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)

√𝑆𝐸𝑠𝑎𝑚𝑝𝑙𝑒
2+𝑆𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
] 14 

If the parameter test statistic computed is higher than the 90% t-statistic, the result would indicate 15 

significant difference across the parameters. Employing the above test statistic computation, 16 

revised t-statistics for all the parameters across all sample are computed. Figure 1 provides a box 17 

plot summary of the variations across samples for all parameters. The figure clearly highlights the 18 

range of the test statistic across all the parameters is quite narrow and exceeds the 90% significance 19 

only for one parameter. The parameter for “percentage of the trip at speeds greater than 70 mph” 20 

presents a range higher than the 90% confidence value of 1.65. This was not surprising given the 21 

variable was only marginally significant in the 1:29 control sample. We still retained the variable 22 

as it was intuitive. Given the stability across all samples, we selected the 1:9 control sample for 23 

further analysis and discussion.  24 



Hoover, Bhowmik, Yasmin and Eluru  8 

  
FIGURE 1: Test Statistics (t-statistics) for Parameter Estimates Across Samples for each 1 

Variable 2 

 3 

Methodological Framework 4 

Employing the 1:9 sample, a multi-level random parameters binary logit model was estimated. A 5 

brief mathematical description of the multi-level random parameters model follows: 6 

Let 𝑞(𝑞 = 1,2,3, … … … . . 𝑚; 𝑀 = 10) represents the index for different samples for each 7 

stratum 𝑖 (each case-control panel of 10 records).  With this notation, the formulation takes the 8 

following familiar form: 9 

 10 

𝑣𝑖𝑞
∗ = {(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞} , 𝑣𝑖𝑞 = 1, 𝑖𝑓 𝑣𝑖𝑞

∗  > 0; 𝑣𝑖𝑞 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        (1) 11 

 12 

where, 𝑣𝑖𝑞
∗  represents the propensity for crash occurrence for sample 𝑞  in stratum 𝑖;  𝑣𝑖𝑞

∗  𝑖𝑠 1 if 13 

sample specific to a given stratum indicates crash and 0 other wise. 𝓏𝑖𝑞 is a vector attributes 14 

associated with sample 𝑞 in stratum 𝑖 and 𝛼 is the vector of corresponding mean effects. 𝛾𝑖𝑞 is a 15 

vector of unobserved factors affecting probability of crash occurrence. 𝜀𝑖𝑞 is an idiosyncratic error 16 

term assumed to be identically and independently standard logistic distributed. 𝜚𝑖𝑞 is a vector of 17 

unobserved effects specific to stratum 𝑖. As highlighted earlier, within each stratum 𝑖,   we matched 18 

1 crash with 9 non-crash samples based on some similar characteristics including driver age, driver 19 

gender, and trip distance within a 20% margin. Therefore, there will be some  common unobserved 20 

factors across the samples, and we capture such correlation using 𝜚𝑖𝑞. Further, as we used 20% 21 

margin for trip distance to match crash: non-crash, it is quite possible that the correlation across 22 

the samples might vary based on this margin. To be specific, sample with lower trip distance 23 
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margin (let’s say 0-5%) might exhibit stronger correlation in comparison to the sample with higher 1 

margins (like 20%). Hence, as opposed to fixing the correlation, we allow it to vary across samples 2 

by parameterizing the 𝜚𝑖𝑞 term as a function of trip distance margin as follows: 3 

 4 

𝜚𝑖𝑞 = 𝛽 + 𝜂 ∗ 𝑡𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑟𝑔𝑖𝑛                                     (2) 5 

 6 

where, 𝛽 (constant) and 𝜂 are vectors of unknown parameters to be estimated. In estimating the 7 

model, it is necessary to specify the structure for the unobserved vectors 𝛾 𝑎𝑛𝑑  𝜚 represented by 8 

Ω. In this paper, it is assumed that these elements are drawn from independent normal distribution: 9 

Ω~𝑁(0, (𝜋′2
, 𝛷2 )). Thus, the equation system for modeling the probability of crash takes the 10 

following form (conditional on Ω): 11 

 12 

𝑃𝑖𝑞 = 𝑝((𝑣𝑖𝑞
∗ )|(Ω) =  

𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞}

1 + 𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞}
                                                             (3) 13 

The corresponding probability for non-crash is computed as  14 

 15 

𝑄𝑖𝑞 = 1 − 𝑃𝑖𝑞                                                                                                                                              (4) 16 

 17 

Further, conditional on Ω, the joint probability 𝐿𝑖 for each stratum 𝑖 can be expressed as: 18 

𝐿𝑖 = ∫ [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑀

𝑞=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 𝑓(Ω)𝑑Ω                                                                                 (5) 19 

 As the integral defined in Equation (5) cannot be analytically estimated, we employ the 20 

maximum simulated estimation approach. The simulation technique approximates the likelihood 21 

function in Equation (5) by computing the 𝐿𝑖 for each stratum 𝑖 at different realizations drawn 22 

from a normal distribution, and averaging it over the different realizations (see (32) for detail). For 23 

instance, if 𝐷𝐿𝑖 is the realization of the likelihood function in the cth draw (c = 1, 2, …, C), then 24 

the simulated log-likelihood function is as follows: 25 

𝐿𝐿 = ∑ 𝐿𝑛 (
1

𝐶
∑(𝐷𝐿𝑖)

𝐶

𝑐=1

) (6)    

The parameters to be estimated in the model are: 𝛼, 𝛾, 𝜚, 𝛽, 𝜂, 𝜋 𝑎𝑛𝑑 𝛷 . To estimate the 26 

proposed model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled 27 

Halton sequence with C set to 150 (see (33; 34) for examples of Quasi-Monte Carlo approaches in 28 

literature). We tested the model with higher C values and found the model estimation was stable. 29 

We estimate this model using GAUSS matrix programming language.  30 

 31 

Model Results 32 

The model estimates are presented in Table 3. A discussion of the model results follows. 33 
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TABLE 3: Multi-Level Random Parameters Binary Logit Model Results 1 

Parameters Estimate (std. err.) T-Statistic 

Constant -2.589 (0.179) -14.493 

Trip Variables 

% Trip < 30 mph 0.515 (0.196) 2.631 

% Trip > 70 mph -0.525 (0.425)** -1.236 

Ln(Distance + 1) 0.194 (0.059) 3.295 

% Trip on urban roads -0.51 (0.15) -3.428 

Driver Demographics 

Drives < 10,000 mi/yr 0.457 (0.088) 5.197 

Drives > 25,000 mi/yr 0.466 (0.141) 3.310 

Full-time worker -3.340 (2.193)* -1.523 

Full-time worker random effect 3.634 (1.777) 2.045 
*   Variable insignificant at 95% significance level; ** Variable insignificant at 85% significance level 2 
 3 

Trip level characteristics 4 

The trip distance parameter was calculated as the natural log of the straight-line distance of the trip 5 

plus one. As the distance increases the crash risk associated also increases, highlighting that 6 

increased exposure to driving results in an increased risk of a crash. The percentage of trip in a 7 

speed category was tested in the model and offered interesting results. We employed the 8 

percentage of trip between 30 and 70 mph as the base category. The parameter results indicate that 9 

as the percentage of the trip under 30 mph increases, the risk associated with a trip resulting in a 10 

crash increases. On the other hand, when the percentage of trip over 70 mph increases, the crash 11 

risk for the trip reduces. The reader would note that the percentages by speed categories are likely 12 

to interact and hence determining the net magnitude of the variable impact is not straightforward. 13 

In the model we considered rural and other roads as the base category and found that as the 14 

proportion of a trip on urban roads increases, the risk of a crash decreases. The result could be 15 

highlighting potential driver alertness in urban conditions as traffic conflicts are expected.  16 

 17 

Driver characteristics 18 

We also examined driver annual mileage as a predictor of crash risk. The variable was categorized 19 

into 3 groups and the 10,000 to 25,000 range was considered as the base. The model estimates 20 

indicate that drivers in the lower range (<10,000) and the higher range (>25,000) are at a higher 21 

risk relative to the drivers in the normal range (10,000 – 25,000). It is also interesting to note that 22 

the magnitude of the impacts for lower and higher mileage ranges are reasonably close. We 23 

examined if the employment status had an impact on crash risk. The model parameter for full-time 24 

worker indicates these drivers are less at risk compared to others.  25 

 26 

Panel and Random effects 27 

The model estimation process considered multiple forms of unobserved variables. These include: 28 

(a) common unobserved effects for each case-control panel of 10 records, (b) common unobserved 29 

factors affecting the error margin in the trip distance variable, and (c) random effects for all 30 

independent variables. Among these parameters tested only one random effect parameter offered 31 

statistically significant result. The result related to full-time worker offered a significant variation 32 

indicating that while full-time workers are likely to experience a lower crash risk on average there 33 

is substantial variation in the actual reduction. In fact, the result indicates that among full-time 34 
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drivers, about 82.1% of the time, the crash risk associated will be lower while for the remaining 1 

17.9% of the time crash risk can increase.  2 

 3 

MODEL APPLICATION  4 

In order for this model to be applied, corrections would need to be made to the constant to match 5 

the actual crash to no crash ratio in the general trip population. In the study we tested crash to no 6 

crash ratios of 1:4, 1:9, 1:14, 1:19, and 1:29, but for the full dataset the crash to no crash ratio was 7 

1:4,850. In order to calculate this, we adjusted the constant for random effect model so that the 8 

probability of a crash would match the 1:4,850 ratio of 0.0002. The resulting calibrated model 9 

parameter for the constant was -8.5527. This model was then tested on a sample dataset of 4,500 10 

randomly selected non-crash trips that had not been used in previous modeling and 500 randomly 11 

selected crash trips that were previously used for modeling. Reusing crash trips was necessary due 12 

to the limited number of crash trips available. A comparison of the results for the original and 13 

calibrated models is shown in Table 4. The results in table 4 clearly indicate that the calibrated 14 

model captures the true ratio of crash to no crash trips.  15 

 16 

TABLE 4: Comparison of Model Predictions for Crash and No Crash Testing Datasets 17 

 
Original Random Effect 

Model 

Calibrated Random Effect 

Model 

Probability of crash using 500 

crash trip testing set 
0.0534 0.0002 

Probability of no crash using 

4,500 no crash  trip testing set 
0.9466 0.9998 

 

CONCLUSION 18 

Traditional crash data has been instrumental in understanding the influence of various factors 19 

drawn from driver demographics, vehicle characteristics, roadway characteristics, crash 20 

characteristics, environmental factors on crash frequency and severity. However, we still have 21 

challenges to truly understand the underlying cause of the crash as several important information 22 

including characteristics of the trip (trip proportion on different facilities: speed limit, roadway 23 

functional class), behavior (like eye movement) and action of the driver (actual speed of the 24 

vehicle) at the time of crash are often missing from the dataset. To that extent, the current research 25 

effort adopted the Second Strategic Highway Research Program (SHRP2) naturalistic driving 26 

study data (NDS), a detailed database recording real time information for both crash and non-crash 27 

trips, to understand and predict the risk of crash occurrence at the finest resolution (trip level). As 28 

opposed to focusing on driver demographics, the NDS data allows us to truly understand the 29 

underlying timeline of the crash and account for driver behavior in the event of the crash. However, 30 

a limitation associated with NDS data is its’ rarity in crash sample relative to non-crash samples 31 

(<0.01 %). Estimating a binary outcome model for such rarity will be extremely challenging. 32 

Hence, the current study employs a rigorous case-control study design for understanding trip level 33 

crash risk. 34 

For the case-control design, trips with a crash are matched with non-crash trips based on 35 

three common matching variables including driver age, driver gender, and trip distance within a 36 

20% margin. Further, we vary the number of controls in the case-control design starting from 4 to 37 

29 (to be specific, 1:4, 1:9, 1:14, 1:19 and 1:29) and conduct a revised Wald test statistic test to 38 

check for the parameter consistency across the samples. Specifically, we employ the 1:29 control 39 
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sample as the population benchmark and evaluate if the parameters for other models are 1 

statistically different or not. The result clearly highlights the stability in parameter estimates across 2 

the samples and hence, we restrict to the 1:9 case-control ratio for further analysis. In particular, 3 

employing the 1:9 sample, a multi-level random parameters binary logit model was estimated 4 

while considering a comprehensive list of factors including trip characteristics (like day of week, 5 

facility types, max acceleration and deceleration), driver demographics (age, gender, income) and 6 

crash level factors (location, collision type, driver impairments, and weather). The model findings 7 

clearly illustrate the significant impact of several variables on the crash risk propensity including 8 

trip distance, trip proportion of different speed limit roads and facilities, driver’s driving 9 

characteristics and employment status. Further, the proposed model also accommodates for the 10 

presence of several unobserved factors on trip level crash risk with respect to correlation and 11 

random effects. However, we only find one random effect parameter offered statistically 12 

significant result for the full-time worker variable. The result indicates that among drivers 13 

employed full time, about 82.1% of the time, the crash risk associated with a trip will be lower 14 

while for the remaining 17.9% of the time crash risk associated with a trip can increase. The 15 

analysis is further augmented by conducting a prediction exercise on a hold-out sample of data 16 

records that is not used for model estimation. However, prior to generating the prediction, we 17 

calibrate the constant of the model to generate a population conforming crash risk model. Findings 18 

from the prediction exercise further reinforces the applicability of the model.  19 

The study is not without limitation. The case-control design adopted in the study focused 20 

on matching the crashes with non-crashes based on three common attributes. However, there is 21 

scope to create multiple case-control designs considering different set of common factors such as, 22 

trip spend on different facilities (rural/urban), trip spend on different speed limit and other 23 

exogenous variables. It will be really interesting to see if the result varies across these different 24 

experimental designs. Exploring these characterizations is an avenue for future research. Finally, 25 

recent advances in rare event literature to study skewed outcome contexts is also an avenue of 26 

research to address potential bias in binary logit model estimation for skewed samples (see (35; 27 

36; 37)).  28 

This study contributed to safety research in two important ways. First, we presented a 29 

framework to employ NDS data to understand and predict crash risk at a disaggregate trip level 30 

accommodating for the influence of trip characteristics as well as traditional crash factors. Second, 31 

we employed a rigorous case control study design for understanding trip level crash risk. In the 32 

future, this research can serve as the foundation for safety researchers to employ SHRP2 and future 33 

NDS data for understanding and predicting crash risk. 34 
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