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ABSTRACT 

Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway 

sites that experience overrepresented crashes, or an increase in the potential for crashes with 

higher severity levels. Valid and reliable methodologies for predicting highway accidents by 

severity are necessary in assessing contributing factors to severe highway crashes, and assisting 

the practitioners in allocating safety improvement resources. Methods: This paper uses urban & 

suburban intersection data in Connecticut, along with two sophisticated modeling approaches, 

i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial - 

Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological 

rationality and accuracy by accommodating for the unobserved factors in predicting crash counts 

by severity level. Furthermore, crash prediction models based on vehicle damage level are 

estimated using the same two methodologies to supplement the injury severity in estimating 

crashes by severity when the sample mean of severe injury crashes (e.g. fatal crashes) is very 

low. Results: The model estimation results highlight the presence of correlations of crash counts 

among severity levels, as well as the crash counts in total and crash proportions by different 

severity levels. A comparison of results indicates that injury severity and vehicle damage are 

highly consistent. Conclusions: Crash severity counts are significantly correlated and should be 

accommodated in crash prediction models. Practical Application: The findings of this research 

could help select sound and reliable methodologies for predicting highway accidents by injury 

severity. When crash data samples have challenges associated with the low observed sampling 

rates for severe injury crashes, this research also confirmed that vehicle damage can be 

appropriate as an alternative to injury severity in crash prediction by severity. 
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1 INTRODUCTION 

1.1 Motivation 

Each year there are over 38,000 motor vehicle crashes related fatalities in the United States of 

America, and traffic collisions are one of the most significant causes of untimely death (NHTSA, 

2016). Traffic safety is a top priority for both Federal and State transportation agencies and there 

is still a critical need for effective strategies to reduce crashes and improve highway safety.  

 

Crash prediction models are one of the most effective approaches to help identify roadway 

locations with overrepresented crashes or the potential for crashes in the future. These predictive 

model results can then be used to implement countermeasures to improve highway safety. 

Therefore, selecting an appropriate and effective crash prediction model is critical when trying to 

identify roadway sites to prioritize for safety improvement. The use of inaccurate or invalid 

modeling approaches and assumptions, might result in biased crash prediction results and thus 

lead to the inefficient use of safety improvement resources and reduce the effectiveness of the 

safety management process. Given the limited safety improvement resources available, sites that 

experience overrepresented high severity crashes, should be our top priority. The development of 

reliable crash prediction methodologies, based on crash severity, is imperative for helping to 

identify hazardous roadway locations and crash contributing factors. This allows for the efficient 

allocation of highway safety improvement strategies to assist in preventing crashes from 

occurring in the future. 
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The first edition of the Highway Safety Manual (HSM, 2010) introduces the crash prediction 

models for total crashes, which are then multiplied by several constant severity proportions to 

predict the crashes by different severity levels. This approach might not be feasible as crash 

severity distributions may vary across sites due to potential variations related to roadway 

geometric, traffic, and environmental characteristics (Wang et al., 2017; Ma and Kockelman, 

2006; Ma et al., 2008; Wang et al., 2017; Wang et al., 2018, 2019). Therefore, crash prediction 

models by severity have been widely investigated to improve the prediction performance of 

crash counts by different severity levels (Tarko et al., 2008; Dixon et al., 2015; Oh et al., 2004; 

Russo et al., 2016; Liu and Sharma, 2018; Abdel-Aty and Radwan, 2000; Lord and Persaud, 

2000; Ulfarsson and Shankar, 2002). In general, two types of methodological frameworks of 

crash prediction models have been implemented by researchers to achieve a better crash severity 

count prediction. The first alternative is to estimate crash counts by different severity levels 

directly. The second alternative which is usually referred to as the two-stage model, is first to 

estimate crash counts in total, followed by estimating crash severity distributions, and then 

combine the latter with the former for crash count prediction by severity.  

 

Estimating crash prediction models by severity might be challenging due to the small sample size 

and low sample mean (Anarkooli et al., 2019), especially for the fatal and severe injury crashes. 

This alternative creates an issue for identifying locations with overrepresented severe crashes 

when the safety improvement resources are limited. To this end, one objective indicator of crash 

consequences - the extent of vehicle damage based on the destruction/deformation of the vehicle 

involved in the crash might be used - to represent the crash consequence as a supplement of 

https://www.sciencedirect.com/science/article/pii/S0001457516303980?via%3Dihub#bib0215
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injury severity. The rationality of modeling crashes by vehicle damage level is because 1) the 

sample mean of crashes with severe vehicle damage levels is higher than the crashes with severe 

injuries, and 2) the vehicle damage is found to be positively correlated with the injury severity in 

multiple studies (Wang et al., 2015; Qin et al., 2013; Wang et al., 2019). For this reason, 

roadway locations experienced overrepresented crashes with severe vehicle damage levels have a 

very high potential to experience more severe injury crashes in the future. 

1.2 Literature Review  

With regard to the methodologies that directly estimate crash counts by severity, the Poisson 

regression model has been initially used to model crashes by each severity level since the crash 

frequencies are non-negative integers (Lord and Mannering, 2010). The Poisson model has its 

implicit restriction - the variance of the data is assumed to be equal to the mean. This assumption 

might not always be valid as the variance of crash data usually is higher than the mean, which is 

also known as the over-dispersion (Washington et al., 2011). To address this issue, the 

Univariate Poisson Lognormal regression and Negative Binomial regression models are then 

used to predict crash counts by severity (Washington et al., 2011; Mannering and Bhat, 2014). 

However, traditional Univariate Poisson Lognormal and Negative Binomial models assume 

crash counts by crash severity to be independent. However, this might not be true due to the 

presence of shared unobserved factors across different severity levels for each observational 

record. Modeling crash severity counts together without accounting for their correlations might 

yield biased parameter estimates, and reduce model prediction accuracy (Ma and Kockelman, 

2006; Ma et al., 2008; Wang et al., 2017; Wang et al., 2018; Mannering and Bhat, 2014; 

Mannering et al., 2016). 
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To address correlations among crash counts across different severity levels, a large number of 

methodologies have been implemented to estimate crash counts by severity jointly. These 

include, but are not limited to Simultaneous Equations Model (Ye et al., 2013); Multivariate 

Generalized Poisson Model (Chiou and Fu, 2013, 2015; Chiou et al., 2014); Joint-Probability 

Model (Pei et al., 2011); and Artificial Neural Network (Zeng et al., 2016). Recently, the 

Multivariate regression models have been extensively applied to simultaneously estimate crash 

counts by severity by accounting for the correlations between crashes among different crash 

severity levels. Multivariate models have been verified to be superior to the Univariate models in 

terms of the parameter estimation and crash prediction accuracy. For instance, Ma and 

Kockelman (2008) applied a Multivariate Poisson-Lognormal model to estimate the crash counts 

by severity, and they found the crash counts highly correlated among different severity levels. 

Park and Lord (2007) applied a Multivariate Poisson-Lognormal model to jointly estimated the 

crash frequencies by severity using the California data. The study implied that the crash 

frequencies are highly correlated among severity levels, and the Multivariate model obtains more 

accurate parameter estimates. Wang et al. (2017) used a Multivariate Lognormal approach to 

estimate crash count models for rural two-lane undivided highways, and the results were 

compared to the Univariate models. The study verified that the Multivariate Lognormal model 

provides unbiased parameter estimates and significantly enhances the prediction accuracy. A 

similar study was conducted by Wang et al. (2018) for freeway crash prediction, and the results 

highlighted that freeway crashes significantly correlated among different levels of crash severity. 

Anastasopoulos et al. (2012) used both Multivariate Tobit and Multivariate Negative Binomial 

models to predict crash rate by severity on multilane divided highways in Washington State. The 
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study found that the prediction accuracy between the two approaches are very close, and both 

methods outperform the univariate models. 

 

Furthermore, the Multivariate models have also been extended by researchers for particular 

perspectives. For instance, to account for the issues of excess zero, unobserved heterogeneity and 

spatial-temporal correlation in crash data, methodologies including but are not limited to 

Multivariate Random-Parameter Zero-Inflated model (Dong et al., 2014), Multivariate Poisson 

Lognormal Spatial model (Barua et al., 2014; Aguero-Valverde, 2013), Multivariate Spatial-

Temporal Bayesian model (Liu and Sharma, 2018), Multivariate Poisson Lognormal 

Conditional-Autoregressive model (Wang and Kockelman, 2013; Xie et al., 2019) and 

Multivariate Random Parameter Spatial Poisson Lognormal model (Barua et al., 2016) were then 

used to estimate the crash counts by severity. Lord and Mannering (2010) provided 

comprehensive guidance on model selection and assessment in crash count prediction. 

 

Now on to the second alternative approach described above. Qin et al. (2013) used a Negative 

Binomial model and a Multinomial Logit model to predict total truck crashes and crash counts 

by each severity level. Chiou and Fu (2013, 2015) and Chiou et al. (2014) examined the use of a 

Multinomial model and a Generalized Poisson model to predict crash frequencies by severity. 

Anarkooli et al. (2019) applied a Negative Binomial model and a Generalized Ordered Probit 

model to estimate crashes by severity on horizontal curves. Geedipally et al. (2013) used a 

Multinomial Logit model to estimate the severity distributions for freeway segments and 

interchanges. Wang et al. (2011) applied a Bayesian spatial model and a mixed logit model to 

estimate crashes by severity for the major roads in England. Savolainen et al. (2011) provided 
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comprehensive guidance on model selection and assessment of prediction of crash severity 

distributions.  

 

However, all of these studies modeled the total crash counts and crash severity distributions 

separately and independently, which might be inappropriate due to the common observed and 

unobserved factors that affect both crash counts and crash severity distributions. Yasmin and 

Eluru (2016) introduced a new modeling framework - The Joint Negative Binomial - Ordered 

Probit Fractional Split (NB-OPFS) model to estimate the total crashes and crash severity 

distributions simultaneously. In their method, a Negative Binomial component was employed for 

estimating crashes in total, and an Ordered Probit fractional split component was employed for 

estimating crash proportions by severity. Unlike previous studies, their modeling framework 

jointly estimates the Negative Binomial component and the Ordered Probit component, by 

accounting for the unobserved heterogeneity across and within the crash count and crash severity 

proportion modeling components. Further, by implementing the Ordered Probit framework, the 

method also accounts for the ordinal nature of crash severity in the crash proportion estimation.        

The authors then further extended their methodology (Yasmin and Eluru, 2018) to a Joint 

Negative Binomial - Generalized Ordered Logit Fractional Split modeling framework to estimate 

crash counts by severity at a zonal level for Florida State. This method allowed the correlation 

between total crash counts and crash severity proportions to vary across zones. The study 

highlighted the superiority of the joint model framework in terms of the prediction accuracy 

compared to the independent model framework. Bhowmik et al. (2019) applied a Panel Mixed 

Generalized Ordered Probit Fractional Split model to examine the contributing factors to vehicle 

operating speed. The study found that roadway related characteristics significantly affect the 
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vehicular speed, and the proposed model framework performs adequately for the speed 

prediction. 

 

1.3 Problem Statement, Study Objectives and Contributions 

Although different methodologies have been applied in predicting crashes by severity, multiple 

issues are still existent and need to be addressed. For instance: 

1. Most of the previous studies focused on implementing one of the two options for crash 

prediction by severity, i.e. either predicting crash severity counts simultaneously or 

predicting total crash counts and crash severity proportions together. There is a lack of 

study in assessing and comparing these two options in highway safety research, which 

can offer insights on the pros and cons of each method, and shed light on method 

selection under different data conditions and research needs. 

2. Although previous research has verified that the low sample mean of severe crashes (e.g. 

fatal crashes) leads to difficulties in crash prediction by severity level, limited research 

provided effective alternatives to address this issue. The shortage of crash prediction 

capability for severe crashes creates troubles to practitioners for identifying target 

roadway locations, when the highway safety improvement resources are limited.       

Accordingly, three major objectives and contributions are addressed and made by this study 

respectively. They are: 

1. Assess and identify the most reliable methodology in predicting crashes by severity, 

using and extending the two advanced statistical methodologies, i.e. the Multivariate 

Poisson-Lognormal (MVPLN) model and the Joint Negative Binomial - Generalized 

Ordered Probit Fractional Split (NB-GOPFS) model. 
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2. Identify and interpret the contributing factors to severe crashes.  

3. Evaluate the rationality of using the vehicle damage as an alternative to injury severity in 

crash prediction models by severity level, to provide practitioners with capabilities of 

effectively allocating safety improvement resources when the low sample mean leads to 

difficulties in predicting severe crashes.    

The remaining parts of this paper are as follows: the second section describes the two 

methodological frameworks and the model estimation methods, the third section describes the 

data used in model estimation, and the fourth section discusses the model estimation results. 

Model comparisons are provided in the fifth section and conclusions are discussed in the final 

section.       

2 METHODOLOGIES 

2.1 Framework for Multivariate Poisson - Lognormal (MVPLN) Model 

The first method used to estimate crash counts by severity is the MVPLN model. Assume 𝑦𝑖 =

(𝑌1𝑖 , 𝑌2𝑖 … , 𝑌𝐽𝑖)
′
for 𝑖 = 1, 2, … , 𝑁 be a J-dimensional vector (i.e. J crash severity levels) of crash 

counts across all N sites. In the MVPLN model, we assume the crash counts are correlated 

among all severity levels. The MVPLN model can be derived as (Serhiyenko et al., 2016): 

𝑌𝑗𝑖|𝜆𝑗𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗𝑖)                                                    (1) 

where 𝜆𝑗𝑖 is the mean of Poisson distribution, which is estimated as: 

𝑙𝑛(𝜆𝑗𝑖) = 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝜷𝑗𝒙𝒋𝒊 + 휀𝑗𝑖                                             (2) 

where 𝑂𝑓𝑓𝑠𝑒𝑡 is the log exposure for total observation days in the data set for intersection 

models (i.e. in this study, the offset for both sign-controlled and signalized intersections is 

log(365*5)=7.51). 𝒙𝑗𝑖 is a vector of independent variables and 𝜷𝑗 is a vector of coefficients to be 
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estimated. 휀𝑗𝑖 is a random term. Assume a vector of the random term 𝜺𝑖 = (휀1𝑖 , 휀2𝑖 … , 휀𝐽𝑖)
′
 at site 

i follows a J-dimensional normal distribution, i.e. 

𝜺𝒊~𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝚺)                                                      (3) 

where 0 is a J-dimensional zero vector, 𝚺 is a J *J variance-covariance matrix and let’s define 

𝚺=(𝜎𝑟𝑠)1≤𝑟<𝑠≤𝐽. Then the mean, variance and covariance of the crash counts by each severity 

level at site i can be derived as (Serhiyenko et al., 2016): 

𝑀𝑒𝑎𝑛 = 𝐸[𝑌𝑗𝑖] = 𝑒𝑥𝑝(𝑂𝑓𝑓𝑠𝑒𝑡 + 𝜷𝑗𝒙𝑗𝑖)𝑒𝑥𝑝(
𝜎𝑗𝑗

2
)                               (4) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟[𝑌𝑗𝑖] = 𝑒𝑥𝑝(𝑂𝑓𝑓𝑠𝑒𝑡 + 𝜷𝑗𝒙𝑗𝑖) 𝑒𝑥𝑝 (
𝜎𝑗𝑗

2
) + 𝑒𝑥𝑝(2(𝑂𝑓𝑓𝑠𝑒𝑡 +

𝜷𝑗𝒙𝑗𝑖) (𝑒𝑥𝑝2(𝜎𝑗𝑗) − 𝑒𝑥𝑝(𝜎𝑗𝑗))                                         (5) 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐶𝑜𝑣[𝑌𝑟𝑖 , 𝑌𝑠𝑖] = 𝑒𝑥𝑝(𝑂𝑓𝑓𝑠𝑒𝑡 + 𝜷𝑗𝒙𝑗𝑖)𝑒𝑥𝑝(
𝜎𝑟𝑟

2
)𝑒𝑥𝑝(

𝜎𝑠𝑠

2
)(𝑒𝑥𝑝(𝜎𝑟𝑠) − 1)  (6) 

The correlations of crash counts between rth and sth crash severity can be accommodated by the 

covariance term in equation (Wang et al., 2017) through the 𝜎𝑟𝑠, which is the off-diagonal entry 

of the J *J variance-covariance matrix. A positive 𝜎𝑟𝑠 represents a positive correlation of crash 

counts between rth and sth crash severity, and a negative 𝜎𝑟𝑠 represents a negative correlation of 

crash counts between rth and sth crash severity. The 𝜎𝑟𝑠 can be further derived as: 

𝜎𝑟𝑠 = 𝜌𝑟𝑠√𝜎𝑠𝑠 ∗ 𝜎𝑟𝑟                                 (7) 

where 𝜎𝑠𝑠 and 𝜎𝑟𝑟 are the diagonal entries of the J *J variance-covariance matrix, and 𝜌𝑟𝑠 is a 

traditional correlation coefficient to be estimated which is between -1 and 1. The probability 

distribution of the given total crash counts 𝒚𝑖 can be written as (Serhiyenko et al., 2016): 

𝑔(𝒚𝑖|𝜷𝑗𝒙𝑗𝑖 , 𝚺) = ∫ … ∫ 𝑓𝑁𝑜𝑟𝑚𝑎𝑙,𝐽(𝜺𝑖|𝟎, 𝚺) ∏ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐽
𝑗=1 𝑦𝑖𝑗|휀𝑗𝑖, 𝜷𝑗𝒙𝑗𝑖)𝑑𝜺𝑖             (8) 

where 𝑓𝑁𝑜𝑟𝑚𝑎𝑙,𝐽 is a J-dimensional normal distribution function, and 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 is a Poisson 

distribution. As noted from previous studies (Wang et al., 2017; Serhiyenko et al., 2016), the 
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probability distribution function shown in equation 8 has no closed algebraic solution, and hence 

the Bayesian framework is used to estimate the coefficients in the MVPLN model. First assume 

every 𝜷𝑗 in equation 2 follows a prior normal distribution as Normal (0, ϐ2) and every 𝜮−𝟏 in 

equation 3 follows a prior Wishart distribution as Wishart (c, ϖ), where ϐ2, c and ϖ are all 

hyperparameters for priors. We used the default hyperparameter specifications in R-INLA (2020) 

for both the Normal prior (𝑖. 𝑒. 𝛽𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 103)) and the Wishart prior with c = 7 (i.e. 

2J+1) degrees of freedom and an identify matric as the precision matrix ϖ. The posterior 

distributions of the coefficients are estimated using the Bayesian inference (Serhiyenko et al., 

2016).  

 

The Markov Chain Monte Carlo (MCMC) (Ma and Kockelman, 2006; Ma et al., 2008) 

simulation, which uses the Gibbs sampler and Metropolis-Hasting (M-H) approach, is usually 

applied to carry out the Bayesian inference on model estimation. However, studies have noticed 

that the MCMC simulation approach is extremely computationally challenging and time-

consuming, especially for a large data sample (Mannering and Bhat, 2014). To address this issue 

and simplify the model estimation procedure, we applied the Integrated Nested Laplace 

Approximation (INLA) approach proposed by Rue et al. (2009) to carry out the Bayesian 

inference of the MVPLN model estimation in this study. The INLA approach doesn’t rely on the 

MCMC and it numerically approximates the posterior distributions of parameters. It has been 

verified to be able to significantly reduce the running time compared to the MCMC approach by 

multiple studies (Serhiyenko et al., 2016; Wang et al., 2017; Wang et al., 2018). The R-INLA 

(2020) package was used to run the MVPLN models. The detailed discussions of the INLA 
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approach and model estimation procedures are referenced in several previous studies 

(Serhiyenko et al., 2016; Rue et al., 2009). 

2.2 Framework for Joint Negative Binomial - Generalized Ordered Probit Fractional Split 

(NB-GOPFS) Model     

In the NB-GOPFS model, the total crash counts and crash proportions by each severity are 

jointly estimated, by accounting for the correlations between total crashes and crash severity 

proportions. Therefore, two model components are included in the NB-GOPFS method, where a 

count model (i.e. a Negative Binomial framework is used in this study) is used to estimate the 

total crash counts, and a fractional split model (i.e. a Generalized Ordered Probit Fractional Split 

framework) is used to estimate the crash proportions by each severity level. Similar to the 

MVPLN model framework, assume i (i = 1, 2, 3 … N) to be the index for the roadway site, and j 

(j = 1, 2, 3 … J) to be the index for the injury severity category. The total crash counts 𝑦𝑖 at site i 

can be estimated using a NB framework, which is derived as: 

                                       𝑃𝑟𝑜𝑏[𝑦𝑖|𝜇𝑖] = 𝑝(𝑦𝑖) =
Γ[(𝜎)+𝑦𝑖]

Γ(𝜎)𝑦𝑖!
[

𝜎

(𝜎)+𝜇𝑖
]

𝜎
[

𝜇𝑖

(𝜎)+𝜇𝑖
]

𝑦𝑖
                                       (9) 

where Γ is a gamma function; 𝜎 is the inverse overdispersion parameter in the NB model, and 𝜇𝑖 

is the expected crash counts at site i, which can be written as: 

𝑙𝑛(𝜇𝑖) = 𝑂𝑓𝑓𝑠𝑒𝑡 + (𝜷 + 𝜻𝒊)𝒙𝑖 + 휀𝑖 + 𝜂𝑖                                        (10) 

where 𝒙𝑖 is a vector of independent variables associated with site i and 𝜷 (not including a 

constant) is a vector of coefficients to be estimated. 𝜻𝒊 (which follows a standard normal 

distribution: 𝜻𝒊~𝑁(𝟎, 𝝅𝟐)) is a vector of estimated coefficients which accounts for the 

unobserved heterogeneity in crash count estimation at site i. exp(휀𝑖) is a random term which 

follows a gamma distribution with mean 1 and variance 𝜎. 𝜂𝑖 is a random factor which 



14 

 

accommodates the correlations between total crash counts and crash severity proportions at site i, 

due to the common unobserved factors.   

 

Considering the ordinal nature of crash severity, the estimation of proportions by each crash 

severity level is carried out by a Generalized Ordered Probit Fractional Split (GOPFS) 

framework. Let’s define the 𝑝𝑗𝑖 be the actual proportion of crash severity j at site i, which is 

assumed to be associated with a latent variable 𝑝𝑖
∗. The latent variable can be specified as 

(Yasmin and Eluru, 2018):  

𝑝𝑖
∗ = (𝜸 + 𝝆𝒊)𝒛𝑖 + 𝛿𝑖 + 𝜂𝑖 ,     𝑝𝑗𝑖 = 𝑗   𝑖𝑓 𝜖𝑖,𝑗−1 < 𝑝𝑖

∗ < 𝜖𝑖,𝑗                      (11) 

This latent propensity 𝑝𝑖
∗ is mapped to the actual severity proportion categories 𝑝𝑗𝑖  by the 𝜖 

thresholds (𝜖0 =-∞ and 𝜖𝑗= ∞). 𝒛𝑖 is a vector of attributes that influences the propensity 

associated with crash severity proportions. 𝜸 is a corresponding vector of mean effects, and 𝝆𝒊 is 

a vector of unobserved factors on severity proportion propensity for site i and its associated 

characteristics assumed to be a realization from standard normal distribution: 𝝆𝒊~𝑁(0, 𝒌2). 𝛿𝑖 is 

an idiosyncratic random error term assumed to be identically and independently standard normal 

distributed across observational unit i. 𝜂𝑖 is a random factor which accommodates the 

correlations between total crash counts and crash severity proportions at site i, due to the 

common unobserved factors. 

 

The GOPFS model relaxes the constant thresholds across observations to provide a flexible form 

of the OPFS model. The basic idea of the GOPFS is to represent the threshold parameters as a 

linear function of exogenous variables to account for the heterogeneity. Thus, the thresholds are 

expressed as: 
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                                                              𝜖𝑖,𝑗 = 𝑓𝑛(𝑠𝑖𝑗)                            (12)  

where, 𝑠𝑖𝑗 is a set of exogenous variables (including a constant) associated with 𝑗𝑡ℎ threshold. 

Further, to ensure the accepted ordering of observed severity proportions (−∞ < 𝜖𝑖,1 < 𝜖𝑖,2 <

 … … … < 𝜖𝑖,𝑗−1 < +∞) , we use the following parametric form as employed by Eluru et al. 

(2008): 

                                                𝜖𝑖,𝑗 = 𝜖𝑖,𝑗−1 + 𝑒𝑥𝑝((𝜏𝑗 + 𝜃𝑗𝑖) 𝑠𝑖𝑗 + 𝜂𝑖)                 (13) 

where, 𝜏𝑗 is a vector of parameters to be estimated. 𝜃𝑗𝑖 is another vector of unobserved factors 

moderating the influence of attributes in 𝑠𝑖𝑗 on the severity proportions for analysis unit i and 

injury severity category j. It is noted from equation 11 that 𝑝𝑗𝑖 is the actual proportion of crash 

severity j, which is different from the traditional generalized ordered Probit model framework 

where the dependent variable is an indicator of crash severity level. In order to estimate the 

generalized order Probit framework with a continuous dependent variable, let’s assume (Yasmin 

and Eluru, 2018) 

𝐸(𝑝𝑗𝑖|𝒙𝑖) = 𝐻𝑗𝑖(𝛾, 𝜖),      0 ≤ 𝐻𝑗𝑖 ≤ 1, ∑ 𝐻𝑗𝑖 = 1𝐽
𝑗=1                             (14) 

𝐻𝑗𝑖 accounts for the ordered Probit probability (𝑃𝑗𝑖) form for the crash severity level j, and it is 

defined as: 

𝑃𝑗𝑖 = 𝜙{𝜖𝑖,𝑗 − [(𝜸 + 𝝆𝒊)𝒛𝑖 + 𝛿𝑖 + 𝜂𝑖]} − 𝜙{𝜖𝑖,𝑗−1 − [(𝜸 + 𝝆𝒊)𝒛𝑖 + 𝛿𝑖 + 𝜂𝑖]}         (15) 

where 𝜙(⦁) is the cumulative standard normal distribution. It is noted from previous research 

(Yasmin and Eluru, 2018) that the correlations between total crash counts and crash proportions 

by severity may vary across sites. Therefore, we parameterize the correlation parameter in this 

study as follows: 

𝜂𝑖 = ⍺𝒄𝑖                                        (16) 
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where, 𝒄𝑖 is a vector of exogenous variables, ⍺ is a vector of unknown parameters to be estimated 

(including a constant). 

 

To jointly estimate the NB probability function (see equation 9) for total crash counts and the 

GOPFS probability function (see equation 15), let’s define a structure Ω for all vectors (i.e. 

𝜻, 𝝆, 𝜽 𝑎𝑛𝑑 ⍺) that account for unobserved heterogeneity, either in NB or GOPFS model 

framework, and 𝛺~𝑁(0, (𝝅𝟐, 𝒌2, 𝒎𝟐, 𝒏𝟐 )). The likelihood function of the Joint NB-GOPFS 

model can be written as: 

𝐿𝑖 = ∫ 𝑝(𝑦𝑖) × ∏ 𝑃𝑗𝑖
𝜔𝑖𝑝𝑗𝑖𝑑𝛺𝐽

𝑗=1𝛺
                                             (17) 

where 𝜔𝑖 is a dummy indicator where 𝜔𝑖 = 1 represents site i has at least one crash, otherwise 

𝜔𝑖 = 0. The log-likelihood function can then be written as: 

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)𝑖                                                              (18) 

Overall, the parameters to be estimated in the Joint NB-GOPFS model are 𝜷, 𝜸, 𝝈, 𝜖, 𝝅, k, m and 

n. The Quasi-Monte Carlo simulation approach based on the scrambled Halton sequence is 

applied to estimate the log-likelihood function, using the GAUSS Matrix Programming Software 

(Aptech, 2019). The detailed discussions of the Joint NB-GOPFS approach and model estimation 

procedures are referenced in several previous studies (Yasmin et al., 2016; Yasmin and Eluru, 

2013, 2018; Bhowmik et al., 2019; Bhat, 2001; Eluru et al., 2008). 

3 DATA PREPARATION 

To estimate and compare the MVPLN and Joint NB-GOPFS models for crash prediction by 

severity, urban & suburban intersections were collected from the State of Connecticut and five-

year crash data (2014-2018) were collected from the Connecticut Transportation Crash Data 

Repository (CTCDR) (2019) and assigned to the specific intersections. 
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A total of 895 intersections are sign-controlled and 1,178 are signalized. To obtain sufficient 

observations in each crash severity level, crash severity counts were aggregated into three 

categories (Wang et al., 2017; Wang et al., 2018):  

1) K+A which combines fatal (K) and incapacitating injury (A) crashes;  

2) B+C which combines non-incapacitating injury (B) and possible injury crashes (C), 

and  

3) PDO which includes the property damage only (PDO) crashes.  

As mentioned earlier, vehicle damage is used as another crash consequence indicator to 

supplement the crash injury severity in this study to further address the low sample mean issue in 

crash prediction models, especially for estimating models for crashes with severe injuries such as 

K and A crashes. According to the Model Minimum Uniform Crash Criteria (MMUCC) 

guideline (2017), vehicle damage was categorized into five levels and vehicle damage counts 

were aggregated into three categories in this study (Wang et al., 2015; Qin et al., 2013; Wang et 

al., 2019):  

1) Severe Damage Crashes which contain all crashes with disabling (salvageable or total 

loss) damage;  

2) Moderate Damage Crashes which contain all crashes with broken or missing parts 

damage, and  

3) Minor Damage Crashes which combine crashes with minor/cosmetic damage and 

crashes with no damage.  

To validate the assumption of using vehicle damage to supplement the injury severity to address 

the low sample mean issue in crash prediction models, Table 1 presents the scatter plots and 
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Pearson correlation coefficients between the injury severity and vehicle damage for both sign-

controlled and signalized intersections. The Pearson correlation coefficients illustrated that the 

injury severity and vehicle damage are highly correlated for both sign-controlled and signalized 

intersections. Furthermore, intersection traffic and geometric data were collected based on the 

urban & suburban arterials chapter in the Highway Safety Manual (HSM) (2010) with regard to 

both sign-controlled and signalized intersections. Table 1 summarizes the descriptive 

characteristics of the intersection and crash data used in this study. 

TABLE 1 Descriptive Characteristics of Urban & Suburban Intersection and Crash Data 

Variables 
Sign-Controlled Intersections 

(895 Intersections) 

Signalized Intersections 

(1,178 Intersections) 

Crash Data 

K+A Crash Min. = 0; Max. = 2; 

Mean =0.1; Std. Dev = 0.3 

Min. = 0; Max. = 5; 

Mean = 0.2; Std. Dev = 0.5 

B+C Crash Min. = 0; Max. = 19; 

Mean = 1.6; Std. Dev = 2.3 

Min. = 0; Max. = 54; 

Mean = 6.2; Std. Dev = 6.3 

PDO Crash Min. = 0; Max. = 61; 

Mean = 5.1; Std. Dev = 6.4 

Min. = 0; Max. = 146; 

Mean = 20.3; Std. Dev = 18.4 

Severe Damage Crash Min. = 0; Max. = 22; 

Mean = 2.4; Std. Dev = 2.7 

Min. = 0; Max. = 60; 

Mean = 5.9; Std. Dev = 5.1 

Moderate Damage Crash Min. = 0; Max. = 23; 

Mean = 1.4; Std. Dev = 2.0 

Min. = 0; Max. = 40; 

Mean = 5.0; Std. Dev = 5.3 

Minor Damage Crash Min. = 0; Max. = 54; 

Mean = 3.3; Std. Dev = 4.5 

Min. = 0; Max. = 129; 

Mean = 15.5; Std. Dev = 15.7 

Intersection Data Frequency Percentage Frequency Percentage 

3-Leg Intersection 687 76.8% 423 35.9% 

4-Leg Intersection 208 23.2% 755 64.1% 

Partial-Way Sign-Controlled Intersection 806 90.1% NA NA 

All-Way Sign-Controlled Intersection 89 9.9% NA NA 

Median Presence at Intersection Approaches 83 9.3% 285 24.2% 

Illumination Presence 599 66.9% 877 74.4% 

Driveway Presence 363 40.6% 478 40.6% 

Exclusive Left-Turn Lane Presence 51 5.7% 766 65.0% 

Exclusive Right-Turn Lane Presence 40 4.5% 586 49.7% 

Protected Left-Turn Signal Phasing Presence NA NA 875 74.3% 

No Right-Turn-On-Red NA NA 654 55.5% 

Major Road AADT Min. = 550; Max. = 32,800; 

Mean = 9,180;  

Std. Dev = 4,842 

Min. = 2300; Max. = 68200; 

Mean = 15,769;  

Std. Dev = 6,676  

Minor Road AADT Min. = 20; Max. = 13,900; 

Mean = 2,534;  

Std. Dev = 2,212 

Min. = 300; Max. = 43,300; 

Mean = 7,482;  

Std. Dev = 5,466 

Intersection Skew Angle Min. = 0; Max. = 89; 

Mean = 22;  

Std. Dev = 20 

Min. = 0; Max. = 90; 

Mean = 22;  

Std. Dev = 23 
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Sign-Controlled Intersections 

   

Signalized Intersections 

   

Figure 1 Correlation between Injury Severity and Vehicle Damage 
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4 MODEL ESTIMATION RESULTS 

Table 2 and table 3 show the estimation results for the MVPLN and Joint NB-GOPFS models by 

different injury severity and vehicle damage levels for urban & suburban sign-controlled and 

signalized intersections, respectively. In each cell, the first value represents the estimated 

coefficient, followed by the p-value of the coefficient in parenthesis. “---” represents the 

coefficient is not statistically significant at the 10% significance level, and the results only 

included variables that are significant at least in one of the models. “NA” represents the variable 

is not applicable in the specific model. 

4.1 Urban & Suburban Sign-Controlled Intersections 

Table 2 presents the model estimation results for urban & suburban sign-controlled intersections. 

The upper part shows the estimated coefficients of the crash prediction models by injury severity 

level, and the lower part shows the estimated coefficients of the crash prediction models by 

vehicle damage level.    

4.1.1 Model Estimation for Injury Severity Component  

With regard to the MVPLN model by injury severity, the crash counts by three different severity 

levels (i.e. K+A, B+C and PDO crashes) are simultaneously estimated using a Poisson-

Lognormal framework by accounting for their correlations due to the common unobserved 

factors. Both the major and minor road AADT are found to be statistically significant and are 

positively associated with all three levels of crash severity counts. Compared with 3-leg 

intersections, 4-leg intersections are associated with increased crash counts by all severity levels, 

which may be due to the fact that there are more conflicting points at 4-leg intersections. As 

expected, all-way stop-controlled intersections have experienced decreased crashes with severe 

injuries because right-of-way is separated for all approaches, and the vehicle speed is lower as all 
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vehicles are ordered to stop first and then go at all-way stop-controlled intersections. If a 

driveway (such as a driveway for gasoline, parking and commercial store etc.) is present at the 

intersection, crash counts by all three severity levels are expected to decrease. This might be 

because drivers tend to drive more carefully at these intersections where vehicles may exit from 

the nearby driveway. Exclusive left-turn lanes are associated with decreased crash counts for all 

three severity levels, and exclusive right-turn lanes are associated with increased crashes with 

less severe injuries. These findings are consistent with the study conducted by Wang et al. 

(2017) that exclusive left-turn lanes may reduce specific crash types relating to severe 

consequences such as head-on crashes, while exclusive right-turn lanes may increase some crash 

types corresponding to less severe injuries such as read-end crashes at sign-controlled 

intersections. The correlation coefficients from the MVPLN model highlight that the crash 

counts are highly correlated among all crash severities, which indicates that accounting for their 

correlations might yield more accurate estimation results when simultaneously estimating crash 

counts by severity level. 

 

The Joint NB-GOPFS model has two components, where a NB modeling framework is used to 

estimate the total crash counts, and a GOPFS modeling framework is used to estimate the crash 

proportions by each severity level. In the NB modeling framework, a positive coefficient 

indicates a positive correlation between the independent variable and total crash counts, and vice 

versa. In the GOPFS modeling framework, a positive coefficient represents that the independent 

variable is associated with increased proportions of severe injury crashes, and vice versa. The 

coefficient estimates in the NB modeling framework are consistent with the MVPLN model, in 

which the major and minor road AADT, 4-leg intersections and exclusive right-turn lanes are 
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associated with increased total crash counts, while all-way controlled intersections and presence 

of driveways are associated with decreased total crash counts. The coefficient estimates of 

GOPFS modeling framework illustrate that more traffics in major road and 4-leg intersections 

are highly correlated with increased proportions of severe injury crashes, and exclusive left-turn 

lanes are significantly associated with decreased proportions of severe injury crashes. The 

threshold parameters in the Joint NB-GOPFS model indicate the demarcation points between 

severity categories which have no substantial interpretation (Yasmin and Eluru, 2018). One 

important finding in the Joint NB- GOPFS model is that the total crash counts and the threshold 

between the proportions of B+C and K+A crashes are positively correlated. This finding implies 

that sites with higher number of total crashes are more likely to incur higher proportions of B+C 

crashes (as the threshold will move rightward in the generalized ordered Probit fractional split 

framework, and the thresholds for B+C and K+A are used to define the crash proportions of B+C 

crashes), and their correlation is found to be constant across different intersections. This verifies 

the presence of common unobserved factors affecting both total crash counts and the proportions 

of crashes by severity and accounting for the unobserved factors when simultaneously estimating 

total crashes and crash severity proportions may provide more accurate estimation results. 

4.1.2 Model Estimation for Vehicle Damage Component  

As mentioned earlier, we also estimated crash prediction models by vehicle damage level to 

supplement the injury severity, which can be used as an alternative to identify locations that may 

experience severe injury crashes in the future when the current sample mean of severe injury 

crashes is very low which leads to the difficulty of developing crash prediction models by injury 

severity. As shown in the results, the MVPLN model coefficient estimates regarding the vehicle 

damage component are highly consistent with the injury severity component. The correlation 
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coefficients show that the crash counts by different vehicle damage levels are significantly 

correlated.  

 

Similarly, the coefficient estimates for the Joint NB-GOPFS model are consistent with those for 

the injury severity component. The correlation coefficients in the Joint NB-GOPFS demonstrate 

that the total crash counts and the proportions of crashes by vehicle damage are positively 

correlated, which implies that sites with a higher number of crashes are more likely to incur 

higher proportions of severe vehicle damage crashes. The consistent model estimation results 

between injury severity and vehicle damage components provide support to our initial hypothesis 

of using vehicle damage as a supplemental indicator of injury severity for estimating crash 

prediction models by different severity levels.                        
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TABLE 2 Model Estimation Results for Sign-Controlled Intersections  

Variables 

Injury Severity Component 

MVPLN Model Joint NB-GOPFS Model 

K+A B+C PDO Total Crashes Severity Proportions 

Constant -17.11 (0.00) -17.59 (0.00) -18.24 (0.00) -9.84 (0.00) NA 

Ln (Major AADT) 0.55 (0.03) 0.68 (0.00) 0.82 (0.00) 0.80 (0.00) 0.10 (0.10) 

Ln (Minor AADT) 0.24 (0.05) 0.54 (0.00) 0.60 (0.00) 0.56 (0.00) --- 

4-Leg Intersection 0.46 (0.08) 0.77 (0.00) 0.46 (0.00) 0.64 (0.00) 0.11 (0.09) 

All-Way Sign-Controlled -1.21 (0.06) -0.55 (0.00) --- -0.31 (0.00) --- 

Driveway Presence -0.45 (0.07) -0.18 (0.02) -0.16 (0.00) -0.16 (0.01) --- 

Exclusive Left-Turn Lane Presence -1.71 (0.05) -0.41 (0.02) -0.19 (0.08) --- -0.23 (0.04) 

Exclusive Right-Turn Lane Presence --- 0.59 (0.00) 0.37 (0.00) 0.35 (0.00) --- 

Overdispersion 0.65 (0.01) 0.47 (0.00) 0.33 (0.00) 0.24 (0.05) NA 

Threshold 1 NA NA NA NA 1.10 (0.06) 

Threshold 2 NA NA NA NA 0.43 (0.00) 

Correlation Coefficients K+A B+C PDO Correlation Coefficients Total Crashes 

K+A 1.00 0.79 (0.00) 0.53 (0.00) Propensity of proportions of 

severe injury crashes 

--- 

B+C  1.00 0.74 (0.00) Threshold between B+C and 

K+A proportions 

0.31 (0.09) 

PDO   1.00 Threshold between PDO and 

B+C proportions 

--- 

Variables 

Vehicle Damage Component 

MVPLN Model Joint NB-GOPFS Model 

Severe  

Damage 

Moderate  

Damage 

Minor  

Damage 

Total Crashes Damage Proportions 

Constant -12.64 (0.00) -16.69 (0.00) -15.73 (0.00) -7.10 (0.00) NA 

Ln (Major AADT) 0.35 (0.00) 0.71 (0.00) 0.66 (0.00) 0.65 (0.00) --- 

Ln (Minor AADT) 0.35 (0.00) 0.34 (0.00) 0.41 (0.00) 0.39 (0.00) --- 

4-Leg Intersection 0.56 (0.00) 0.36 (0.00) 0.16 (0.02) 0.48 (0.00) 0.14 (0.02) 

All-Way Sign-Controlled -0.33 (0.01) --- --- -0.18 (0.08) -0.01 (0.09) 

Driveway Presence -0.18 (0.01) --- --- -0.09 (0.09) -0.10 (0.07) 

Exclusive Right-Turn Lane Presence 0.27 (0.05) 0.75 (0.00) 0.21 (0.08) 0.38 (0.00) -0.04 (0.04) 

Overdispersion 0.33 (0.00) 0.38 (0.00) 0.34 (0.00) 0.04 (0.00) NA 

Threshold 1 NA NA NA NA -0.96 (0.06) 

Threshold 2 NA NA NA NA -0.69 (0.00) 

Correlation Coefficients Severe Damage Moderate Damage Minor Damage Correlation Coefficients Total Crashes 

Severe Damage 1.00 0.73 (0.00) 0.61 (0.00) Propensity of proportions of 

severe vehicle damage crashes 

0.47 (0.00) 
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Moderate Damage  1.00 0.78 (0.00) Threshold between moderate 

and severe damage proportions 

--- 

Minor Damage   1.00 Threshold between minor and 

moderate damage proportions 

--- 

 Notes: the first value represents the estimated coefficient, followed by the p-value of the coefficient and the following value in parenthesis; “---” represents the 

variable is not statistically significant at the 10% significance level; “NA” represents the variable is not applicable in the model.  



27 

 

4.2 Urban & Suburban Signalized Intersections 

4.2.1 Model Estimation for Injury Severity Component  

Table 3 presents the model estimation results for urban & suburban signalized intersections. In 

terms of the injury severity component, the estimated coefficients for major and minor road 

AADT and 4-leg intersections are consistent with the urban & suburban sign-controlled 

intersections, and are associated with increased crash counts for all three levels of crash severity. 

Presence of driveway is found to be correlated with increased B and C and PDO crashes at 

signalized intersections. The exclusive right-turn lanes are found to be negatively associated with 

all severity counts at signalized intersections. One interesting finding is that the protected left-

turn signal phasing is correlated with decreased severe injury crashes (K and A crashes), but is 

correlated with increased B, C and PDO crashes. This might be because the protected left-turn 

signal phasing can be effective at reducing the head-on crashes, but it might increase the rear-end 

crashes when the leading vehicle unexpectedly brakes and collided by the following vehicle 

when the left-turn signal turns to yellow or red. The presence of no right-turn-on-red at 

signalized intersections is correlated with the increased PDO crashes only, which may be due to 

the driver’s violation of this type of traffic control. The MVPLN model indicates that the crash 

counts are highly correlated among all crash severity levels at the urban & suburban signalized 

intersections.  

 

With respect to the Join NB-GOPFS model, the estimation results for total crashes in the NB 

modeling component are still consistent with the MVPLN model. Three variables are found to be 

significant for estimating crash proportions by severity level in the GOPFS modeling component. 

4-leg intersections are associated with increased proportions of severe injury crashes. If a 
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depressed median is present on any of the intersection approaches, the proportions of severe 

injury crashes are expected to be increased. The exclusive left-turn lanes are associated with 

decreased proportions of severe injury crashes. Different from the urban & suburban sign-

controlled intersections, the estimated correlation coefficients from the Joint NB-GOPFS model 

indicate that the total crash counts and crash severity proportions are independent at urban & 

suburban signalized intersections. 

4.2.2 Model Estimation for Vehicle Damage Component  

The model estimation results for the vehicle damage component yield consistent parameters with 

the injury severity component, and the crash counts are prone to be correlated among crashes 

with all vehicle damage levels. For the Joint NB-GOPFS model, higher traffic volumes yield 

decreased proportions of severe damage crashes, which fits the expectation because vehicle 

speed tends to be lower when the traffic is heavy. Protected left-turn signal phasing is associated 

with decreased proportions of severe damage crashes. Same as the injury severity component, 

the total crashes and crash proportions by each vehicle damage level are found to be independent 

in the Joint NB-GOPFS model.          
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TABLE 3 Model Estimation Results for Signalized Intersections  

Variables 

Injury Severity Component 

MVPLN Model Joint NB-GOPFS Model 

K+A B+C PDO Total  

Crashes 

Severity 

Proportions 

Constant -22.12 (0.00) -17.56 (0.00) -17.37 (0.00) -9.58(0.00) NA 

Ln (Major AADT) 0.89 (0.00) 0.81 (0.00) 0.89 (0.00) 0.87 (0.00) --- 

Ln (Minor AADT) 0.60 (0.00) 0.40 (0.00) 0.43 (0.00) 0.48 (0.00) --- 

4-Leg Intersection 0.24 (0.10) 0.48 (0.00) 0.40 (0.00) 0.43 (0.00) 0.09 (0.00) 

Intersection Approach Median Presence --- --- --- --- 0.07 (0.03) 

Driveway Presence --- -0.20 (0.00) -0.17 (0.00) -0.17 (0.01) --- 

Exclusive Left-Turn Lane Presence --- --- --- --- -0.09 (0.01) 

Exclusive Right-Turn Lane Presence -0.32 (0.05) -0.17 (0.00) -0.10 (0.01) -0.08 (0.05) --- 

Protected Left-Turn Signal Phasing Presence -0.35 (0.07) 0.09 (0.06) 0.12 (0.00) --- --- 

No Right-Turn-On-Red --- --- 0.07 (0.01) --- --- 

Overdispersion 0.54 (0.00) 0.34 (0.00) 0.23 (0.00) 0.29 (0.00) NA 

Threshold 1 NA NA NA NA 0.55 (0.14) 

Threshold 2 NA NA NA NA 0.56 (0.00) 

Correlation Coefficients K+A B+C PDO Correlation Coefficients Total Crashes 

K+A 1.00 0.77 (0.00) 0.65 (0.00) Propensity of proportions of  

severe injury crashes 

--- 

B+C  1.00 0.83 (0.00) Threshold between B+C  

and K+A proportions 

--- 

PDO   1.00 Threshold between PDO  

and B+C proportions 

--- 

Variables 

Vehicle Damage Component 

MVPLN Model Joint NB-GOPFS Model 

Severe  

Damage 

Moderate 

Damage 

Minor 

Damage 

Total  

Crashes 

Damage 

Proportions 

Constant -15.32 (0.00) -19.37 (0.00) -18.98 (0.00) -9.53 (0.00) NA 

Ln (Major AADT) 0.67 (0.00) 0.95 (0.00) 0.93 (0.00) 0.86 (0.00) -0.08 (0.03) 

Ln (Minor AADT) 0.33 (0.00) 0.44 (0.00) 0.53 (0.00) 0.47 (0.00) -0.08 (0.00) 

4-Leg Intersection 0.48 (0.00) 0.42 (0.00) 0.42 (0.00) 0.43 (0.00) --- 

Driveway Presence -0.16 (0.00) -0.15 (0.00) -0.20 (0.00) -0.17 (0.00) --- 

Exclusive Left-Turn Lane Presence --- -0.11 (0.05) --- --- --- 

Exclusive Right-Turn Lane Presence -0.22 (0.00) -0.15 (0.00) -0.12 (0.00) -0.09 (0.03) --- 

Protected Left-Turn Signal Phasing Presence -0.08 (0.09) 0.13 (0.03) 0.14 (0.01) --- -0.10 (0.00) 

Overdispersion 0.22 (0.00) 0.32 (0.00) 0.27 (0.00) 0.28 (0.00) NA 
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Threshold 1 NA NA NA NA -1.41 (0.00) 

Threshold 2 NA NA NA NA -0.68 (0.00) 

Correlation Coefficients Severe Damage Moderate Damage Minor Damage Correlation Coefficients Total Crashes 

Severe Damage 1.00 0.69 (0.00) 0.67 (0.00) Propensity of proportions of  

severe vehicle damage crashes  

--- 

Moderate Damage  1.00 0.83 (0.00) Threshold between moderate  

and severe damage proportions 

--- 

Minor Damage   1.00 Threshold between minor  

and moderate damage proportions 

--- 
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5 MODEL COMPARISONS 

In order to evaluate the model prediction capability between the MVPLN and Joint NB-GOPFS 

models, we randomly selected 80% of the datasets (i.e. estimation datasets) to estimate the model 

coefficients, and used the remaining 20% datasets (i.e. validation datasets) to evaluate the model 

prediction accuracy, based on the criteria of Mean Absolute Error (MAE) calculated as:  

𝑀𝐴𝐸 = ∑
|𝑌𝑖,𝑝𝑟𝑒𝑑.−𝑌𝑖,𝑜𝑏𝑠.|

𝑁

𝑁
𝑖=𝑖                                                         (19) 

where 𝑌𝑖,𝑝𝑟𝑒𝑑. represents the predicted crash counts for intersection i corresponding to the 

specific injury severity or vehicle damage; 𝑌𝑖,𝑜𝑏𝑠. represents the observed crash counts for 

intersection i corresponding to the specific injury severity or vehicle damage; and N represents 

the sample size. 

    

A smaller MAE value indicates a better prediction accuracy. The MAE is calculated for both 

model estimation (EMAE) and validation (VMAE) datasets. Figure 2 and Figure 3 present the 

model prediction comparison results. In general, the MVPLN model performs slightly better in 

predicting severe crashes, while the Joint NB-GOPFS model performs better in predicting less 

severe crashes. Specifically, in terms of the crash prediction by injury severity for both sign-

controlled and signalized intersections, the MVPLN model slightly outperforms the Joint NB-

GOPFS model in predicting K and A crashes, while the Joint NB-GOPFS model performs better 

in predicting B, C and PDO crashes. The Joint NB-GOPFS model has a smaller prediction error 

than the MVPLN model based on the average MAE value across all severity levels. With regard 

to the crash prediction by vehicle damage, the MVPLN model performs slightly better than the 

GOPFS model in predicting severe and minor damage crashes and the average crashes across all 
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damage levels for sign-controlled intersections, but it only outperforms the GOPFS model in 

predicting severe damage crashes for signalized intersection. 

 

 

Figure 2 Model Performance Comparisons for Sign-Controlled Intersections 
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Figure 3 Model Performance Comparisons for Signalized Intersections 

6 SUMMARY AND CONCLUSIONS 

This paper presents two advanced frameworks in predicting crash counts by each severity level, 

i.e. either directly estimating crash counts by different severity levels, or first estimating crash 

counts in total, and then estimating crash severity distributions to combine with the total crashes 

for crash count prediction by severity. Two advanced methodologies are implemented with 

regard to each of the framework. In terms of the first framework, a MVPLN model is used to 

simultaneously estimate crash counts by different severity levels, by accounting for their 

correlations due to the common unobserved factors. In the second framework, a Joint NB-

GOPFS model is applied in which a NB modeling component is used to estimate the total crash 

counts and a GOPFS modeling component is used to estimate the crash proportions by each 

severity level. The NB and GOPFS modeling components are jointly estimated by accounting for 

the correlations between total crashes and crash severity proportions due to the common 

unobserved factors. 

 

Both sign-controlled and signalized intersections at urban & suburban areas are collected from 

the State of Connecticut and used for model estimation. The estimated coefficients in the 
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MVPLN model show that crash counts are highly correlated among all severity levels for both 

sign-controlled and signalized intersections, which indicates that accounting for their correlations 

might yield more accurate estimation results when simultaneously estimating crash counts by 

severity. The estimation results of the Joint NB-GOPFS model show that the total crashes are 

significantly correlated with the proportions of B and C crashes at sign-controlled intersections, 

and their correlations should be accommodated when simultaneously estimating total crash 

counts and crash proportions by severity. The total crash counts are found to be independent with 

the crash proportions by severity at signalized intersections.  

 

In addition, we further estimated crash prediction models by vehicle damage level to supplement 

the injury severity, which can be used as an alternative to identify locations that may experience 

severe injury crashes in the future when the current sample mean of severe injury crashes (such 

as K and A crashes) is very low which leads to the difficulty of developing crash prediction 

models by injury severity. The model estimation results for injury severity component and 

vehicle damage component are highly consistent. This finding verifies our initial assumption that 

when crash data samples have challenges associated with the low observed sampling rates for 

severe injury crashes, vehicle damage can be appropriate as an alternative to injury severity in 

crash prediction by severity. An important finding from the model estimation is that two 

methodologies may yield different variables that are statistically significant in predicting crashes 

by severity level. For example, the traffic volumes are shown to be significant in all MVPLN 

models when crash counts by severity are simultaneously modeling, while the traffic volumes 

seldom affect the prediction of crash proportions by each severity level in the Joint NB-GOPFS 

model. This may provide additional insight about variable selection in crash prediction models 
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by severity level regarding different approaches. In the end, the prediction performance of the 

two approaches is compared based on the MAE values. The comparisons show that the MVPLN 

slightly outperforms the Joint NB-GOPFS model in terms of predicting severe crashes, while the 

Joint NB-GOPFS model significantly improves the prediction accuracy of less severe crashes 

compared to the MVPLN model. This finding contributes to the practical applications of both 

crash prediction research and safety improvement effort through shedding light on method 

selection under different data conditions and research needs, in which the MVPLN is 

recommended when the analysis target is severe crashes while the NB-GOPFS is preferred for 

less severe crashes. 

7 PRACTICAL APPLICATIONS AND FUTURE WORK 

The findings of this research can offer additional insight into selecting robust methodological 

modeling frameworks in estimating crash counts by different severity levels, and provide 

researchers and practitioners with the capabilities of estimating crash prediction models when the 

low sample mean leads to difficulties in predicting severe crashes. In this study, we used the 

intersection data to test the proposed modeling frameworks. Future research can focus on 

extending the modeling frameworks to roadway segments. Future research can also target on 

extending the MVPLN model to the generalized MVPLN framework, and further extending the 

Joint NB-GOPFS modeling framework by accounting for the temporal and spatial heterogeneity. 
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