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ABSTRACT 
Safety literature has traditionally developed independent model systems for macroscopic and 

microscopic level analysis. The current research effort contributes to the literature on crash 

frequency by building a bridge between these two divergent streams of crash frequency research. 

The study proposes an integrated micro-macro level model for crash frequency estimation. 

Specifically, the study develops an integrated model system that allows for the influence of 

independent variables at the microscopic level to be incorporated within the macroscopic 

propensity estimation. The empirical analysis is based on the data drawn from 300 traffic analysis 

zones, 1,818 roadway segments, and 4,184 intersections from the City of Orlando, Florida for the 

years 2018 and 2019. The study considers a host of exogenous variables including roadway and 

traffic factors, land-use, built environment, and sociodemographic characteristics for the model 

estimation. The proposed model system can also accommodate for hierarchical correlations such 

as correlation between all segments or intersections in a zone. The study findings highlight the 

presence of common spatial unobserved factors influencing crash frequency across segment level 

and intersection level as well as presence of significant parameter variability across both micro 

and macro level in the crash frequency. The empirical analysis is further augmented by employing 

several goodness of fit and predictive measures. The results clearly demonstrate the improved 

performance offered by the proposed integrated micro-macro model relative to the non-integrated 

macro model. The overall model fit measures and interpretations encourage the application of the 

proposed model for crash frequency analysis. 

 

Keywords: Crash frequency; Integrated micro-macro model; Comparison exercise; Unobserved 

effects. 
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1 BACKGROUND 
Statistical and econometric models are important tools for understanding the factors affecting crash 

occurrence and their consequences. These models allow policy makers and transportation 

professionals to recommend strategies that reduce crash occurrence and/or alleviate the 

consequences of crashes. Crash occurrence is traditionally examined as crash frequency while 

crash consequences are analyzed as crash severity. Crash frequency models are developed for a 

spatial unit (such as traffic analysis zone (TAZ), county, and city) (Abdel-Aty et al., 2013; 

Bhowmik et al., 2021a, 2021b, 2019; Yasmin and Eluru, 2018, 2016; Zeng et al., 2019) or a facility 

(such as a segment or intersection) (Abdulhafedh, 2016; Dong et al., 2014; Mohammadnazar et 

al., 2021; Wali et al., 2018; Wang et al., 2020; Zeng et al., 2020). The aggregate spatial unit models 

are referred to as macroscopic models while the facility level models are referred to as microscopic 

models (Cai et al., 2019). Safety research has traditionally developed independent model systems 

for each of these levels. The current research contributes to growing literature on crash frequency 

models by building a bridge between the two traditionally divergent streams of crash frequency 

research.  

The proposed research recognizes that crashes at a microscopic level (at segments or 

intersections) are aggregated for a spatial unit to generate crash frequency at the macroscopic level. 

When separate models are developed at the macroscopic and microscopic level, the embedded 

relationship within the data relating the microscopic level and macroscopic level crashes is 

neglected or lost. Earlier research efforts have attempted to address this issue by developing 

hierarchical model systems that recognize the multiple microscopic level dependent variables 

within a macroscopic unit (Alarifi et al., 2017, 2018; Huang and Abdel-Aty, 2010). However, these 

approaches accommodate for interactions across the different levels via common unobserved 

factors. While this approach is an enhancement over independent macro and micro level models, 

there are other drawbacks. In independent macroscopic models or hierarchical models, we can 

only incorporate the influence of observed macroscopic resolution variables on crash frequency. 

For example, segment level characteristics in a zone (such as speed limit or number of lanes) can 

only be considered at a zonal level. Given that crash frequency models often take the form of non-

linear model systems, a simple aggregation of an independent variable (say average distance 

weighted speed limit in the zone) might not reflect the true impact of the variable at the 

macroscopic level. In fact, it would be appropriate to posit that macroscopic models that consider 

aggregate zonal variables are inadvertently introducing model parameter bias by not recognizing 

the inherently non-linear nature of variable impacts on crashes. A truly integrated approach allows 

us to test for the influence of factors affecting crashes at the microscopic level on the crash 

frequency at the macroscopic level.  

In summary, the current research proposes an integrated model system that allows for the 

influence of independent variables at the microscopic level to be incorporated within the 

macroscopic propensity estimation. The approach would involve incorporating the sum of crash 

propensity by type of micro-facility within the macroscopic propensity computation. Within this 

proposed framework, two specific model structures are examined. In the first model structure, the 

propensity is computed as an expected value and an associated parameter for each facility type is 

estimated. In the second approach, the propensity of the microscopic models is incorporated while 

allowing for the microscopic model parameters to vary based on the macroscopic fit. The first 

approach fixes the microscopic models and accommodates for the cumulative propensity influence 

as any other independent variable. In the second approach, feedback between macroscopic and 

microscopic models is allowed (more details in the methodology section). In both approaches, the 
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model structure is quite flexible and truly builds on the individual microscopic and macroscopic 

components. The integrated model with simple constraints can be employed to estimate the 

traditional macroscopic and microscopic models.  

The proposed model system is estimated using data drawn from the City of Orlando for the 

years 2018 and 2019. The study considers a total of 300 TAZs, 1,818 roadway segments, and 4,184 

intersections for the analysis. An exhaustive set of independent variables including roadway and 

traffic factors, land-use attributes, built environment characteristics, and sociodemographic 

characteristics at both macroscopic and microscopic levels are considered. The model estimation 

procedure explicitly tested for potential temporal parameter instability by estimating separate 

models for 2018 and 2019 (as highlighted in multiple articles on temporal parameter stability, see 

Mannering, 2018; Marcoux et al., 2018; Behnood and Mannering, 2019; Islam and Mannering, 

2020; Kabli et al., 2020; Tirtha et al., 2020). The model estimation results are further augmented 

by the evaluation of the predictive performance of the proposed framework. 

 

2 EARLIER RESEARCH AND CURRENT STUDY IN CONTEXT 
Crash frequency models at the macroscopic and microscopic levels have been explored extensively 

in safety literature. Macroscopic crash frequency models, with a focus on long-term safety 

planning, analyze crash occurrence for aggregated geographical regions such as state, county, city, 

traffic analysis districts (TADs), and traffic analysis zones (TAZs) (Abdel-Aty et al., 2013, 2011; 

Aguero-Valverde and Jovanis, 2006; Azimian et al., 2021; Bhowmik et al., 2022, 2021a, 2021b, 

2019, 2018; Cheng et al., 2020; Cui and Xie, 2021; Huang et al., 2019, 2010; Li et al., 2019; Liu 

and Sharma, 2018; Noland and Oh, 2004; Soroori et al., 2019; Wang et al., 2020; Xie et al., 2019; 

Yasmin and Eluru, 2018, 2016; Zeng et al., 2019). On the other hand, microscopic crash frequency 

models examine factors affecting crash occurrence at a facility resolution such as a segment or an 

intersection to suggest facility specific treatments (Abdulhafedh, 2016; Aguero-Valverde and 

Jovanis, 2008; Alarifi et al., 2017, 2018; Alhomaidat et al., 2020; Dong et al., 2014; Gong et al., 

2020; Kaaf and Abdel-Aty, 2015; Kim et al., 2007; Kim and Washington, 2006; Mohammadnazar 

et al., 2021; Mousavi et al., 2021; Oh et al., 2004; Saha et al., 2020; Satria et al., 2020; Shirani-

bidabadi et al., 2020; Veeramisti et al., 2021; Wali et al., 2018; Wang et al., 2020; Wen et al., 

2019; Ye et al., 2009; Yu et al., 2019; Zeng et al., 2020).  

s 

2.1 Independent Microscopic and Macroscopic Models 
An exhaustive review of studies from the two levels is beyond the scope of the paper (for recent 

reviews, see Bhowmik et al., 2019; Lord and Mannering, 2010; Mannering and Bhat, 2014; Wang 

et al., 2021). We provide a summary of earlier work on independent macro and micro level models 

along two dimensions: (a) methodologies employed, and (b) important factors that affect crash 

frequency. On the methodological front, as the dependent variable is crash frequency in the two 

systems, there is a lot of commonalities. Most commonly used methods include Poisson regression 

model (Abdulhafedh, 2016; Oh et al., 2004), Poisson lognormal model (Oh et al., 2004), multi-

level Poisson lognormal model (Alarifi et al., 2018, 2017), negative binomial (NB)/Poisson-

Gamma model (Abdel-Aty et al., 2011; Aguero-Valverde and Jovanis, 2006; Alhomaidat et al., 

2020; Gong et al., 2020; Noland and Oh, 2004; Wali et al., 2018; Wang et al., 2020), NB-ordered 

logit fractional split model (Yasmin and Eluru, 2018), latent segmentation Poisson/negative 

binomial model (Yasmin and Eluru, 2016), panel mixed NB model (Bhowmik et al., 2019), spatial 

Durbin model (Wang et al., 2019), multivariate Tobit model (Zeng et al., 2019), copula-based 

crash frequency model (Bhowmik et al., 2021a; Yasmin et al., 2018), Bayesian Poisson-
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lognormal/hierarchical models (Abdel-Aty et al., 2013; Azimian et al., 2021; Cui and Xie, 2021; 

Huang et al., 2019, 2010; Li et al., 2019; Satria et al., 2020; Wang and Huang, 2016; Zeng et al., 

2020), geographically weighted regression model (Li et al., 2013; Liu et al., 2017; 

Mohammadnazar et al., 2021), Poisson-Tweedie model (Saha et al., 2020), and Conway-Maxwell 

Poisson model (Shirani-bidabadi et al., 2020). The reader would recognize that microscopic crash 

frequency models are likely to be affected in most cases with excessive zeros. Thus, microscopic 

models might see increased application of zero-inflated models and/or hurdle models (Dong et al., 

2014; Yu et al., 2019).  

At the macroscopic level, the factors identified to be of significance include roadway and 

traffic factors, land-use, built environment, and sociodemographic factors. For instance, county 

level models identified factors include roadway density, intersection density, urban land-use, 

school density, population, proportion of males, population aged above 65, and median household 

income (Azimian et al., 2021; Cheng et al., 2020; Li et al., 2019). In addition to these factors, TAZ, 

TAD and census tract level models identified the effect of number of lanes, divided road length, 

sidewalk and shoulder width, speed limits, bikeway length, intersection types, signal intensity, 

Annual Average Daily Traffic (AADT), percentage of truck traffic, vehicle miles travelled, 

commercial, residential, office area, number of residential units, shopping centers, number of 

household with no vehicles, unemployment rate, commute mode share for drive alone, public 

transit, and non-motorized means of transport on crash counts (Bhowmik et al., 2019; Cai et al., 

2019; Cui and Xie, 2021; Huang et al., 2019, 2016; Park et al., 2020; Pljakić et al., 2019; Soroori 

et al., 2019; Wang et al., 2019; Xie et al., 2019; Zeng et al., 2019; Zhai et al., 2019). At the 

microscopic level, for intersections, the factors identified include number of legs, number of 

exclusive left-turn and right-turn lanes, angle of intersection, presence of signs, bus stops, 

curvature and medians on approaches, major and minor road AADT, and percentage of truck traffic 

(Alarifi et al., 2018, 2017; Cai et al., 2019; Dong et al., 2014; Gong et al., 2020; Huang et al., 2016; 

Park et al., 2020; Saha et al., 2020; Veeramisti et al., 2021). For segment crash frequency models, 

factors identified include segment length, posted speed limit, median width, access control, 

number of lanes, curvature, gradient, AADT, and percentage of truck traffic (Alarifi et al., 2018, 

2017; Alhomaidat et al., 2020; Huang et al., 2016; Mohammadnazar et al., 2021; Satria et al., 2020; 

Veeramisti et al., 2021; Wang et al., 2020; Wen et al., 2019; Yu et al., 2019; Zeng et al., 2020).    

 

2.2 Integrated Microscopic and Macroscopic Models 
The primary focus of our review is on studies that recognize the interconnectedness of macroscopic 

and microscopic crash models. Huang and Abdel-Aty (2010) presented the potential hierarchical 

relationships involved in safety literature such as crash frequency for county – corridor – 

intersection combination. They suggest the consideration of county and corridor level observed 

and unobserved variables in modeling intersection crash frequency. Huang et al. (2016) estimated 

separate models for microscopic and macroscopic levels. The microscopic model predictions were 

aggregated at the zonal level and were compared to the prediction from macroscopic model and 

observed counts. As expected, the microscopic model performed better given the larger amount of 

data that is incorporated in the micro model. Alarifi et al. (2017) proposed a multilevel joint model 

that examines segment and intersection level crash frequency simultaneously by relating them 

based on a corridor level identifier. The authors employed corridor level observed and unobserved 

variables to accommodate for the potential correlation across the two facility types (see Wang and 

Huang, 2016 for similar analysis at the zonal level). The research was further extended in Alarifi 

et al. (2018) by considering crash frequency by crash type. Wang et al. (2017) developed crash 
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frequency models by transportation mode at the microscopic level by considering macroscopic 

variables and concluded their consideration improved model fit. Park et al. (2020) built on earlier 

multilevel modeling research by considering segment/intersection membership as a weighted 

function to predict crashes. Overall, the summary of these research efforts clearly highlights how 

microscopic models were enhanced by considering macroscopic variables (observed and 

unobserved) in the analysis. It is important to note that none of these studies enhance the 

macroscopic model development process by embedding microscopic facility level attributes.  

An exception to this is the Cai et al. (2019) that proposed a joint modeling approach. In 

this study, the authors recognize that sum of observed crashes at the microscopic level (segments 

and intersections) should add up to the macroscopic crashes in the zone. At the same time, to 

accommodate for potential error in microscopic model prediction, they employ an adjustment 

factor as a function of zonal variables. The adjustment factor acts as a calibration parameter for 

the macro level crashes. While this study is a substantial improvement on prior research, the 

authors restrict the macroscopic model estimation to macro level socioeconomic variables. Further, 

the model structure is such that the framework cannot be used to estimate traditional microscopic 

and macroscopic models within the same system.  

 

2.3 Context of the Current Study 
In our current study, we develop a representatively integrated model from the first principles. The 

model system proposed recognizes that crashes at the micro level facilities contribute to total 

macroscopic level crash counts. To allow for this influence, we add one component per micro level 

facility type (such as intersection or segment) in the form of an additional variable in the propensity 

of the macroscopic model system. The component for a facility type is evaluated as the sum of 

crash propensity for all facilities of that type in the spatial unit. A scalar parameter for each facility 

type component can be estimated in the model system. The introduction of component by micro 

level facility type provides two possible model frameworks. In the first framework, we focus on 

the optimization of the macroscopic model data fit by only estimating the scalar parameter per 

component. The parameters embedded with the micro level models are assumed fixed for this 

purpose. In the second approach, a joint log-likelihood function of macroscopic and microscopic 

models is considered, and the microscopic parameters are estimated based on their contribution to 

microscopic model directly and the macroscopic model via the microscopic propensity component 

in the macroscopic model. The proposed model system can also accommodate for hierarchical 

correlations such as correlation between all segments or intersections in a zone. These correlations 

also implicitly account for spatial variations for facilities in the zone.  

The overall model development process is achieved using a negative binomial regression 

framework at the micro and macro level. The approach can be extended readily to any possible 

mathematical model (such as Poisson lognormal). In terms of empirical analysis, this study 

incorporates both micro and macro level factors for crash frequency analysis of both zonal level, 

and segment and intersection level. The empirical analysis is based on the traffic analysis zone 

(TAZ) level crash count data, and segments and intersections level crash count data from Orlando 

city of Florida. The model estimation results are further augmented by the evaluation of the 

predictive performance of the proposed model. The proposed approach will offer significant 

advantages methodologically and empirically. Methodologically, a single integrated model will 

allow us to employ a single model code for estimation of macroscopic and microscopic models. 

The integrated model developed can be employed to estimate the traditional macroscopic and 

microscopic models by setting the appropriate parameters to zero. In addition, incorporating micro 
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level variables into the macro level propensity offers improved model performance. Thus, a better 

understanding of the crash occurrence can be achieved with this framework. On the empirical side, 

a better understanding of crash contributing factors will allow us to provide pragmatic and efficient 

crash countermeasures. Since the proposed model considers variables from both macro and micro 

levels, it is possible to select countermeasures for both levels from this framework. The proposed 

model can also be applied to identify crash hotspots, which is a top priority for safety treatment. 

The rest of the paper is organized as follows: The methodology section will provide 

mathematical details of the proposed model system. The data section will describe data 

compilation procedures. The results section will present the findings of the model estimation and 

discuss the predictive performance of the model. The final section will conclude the paper and 

offer thoughts for future work.  

 

3 METHODOLOGY 
The econometric formulation of the proposed integrated micro-macro model is presented here 

(please see Bhowmik et al., 2021a; Wang et al., 2020 for details methodology of simple macro and 

micro model).  

 

3.1 Integrated Micro-Macro Approach 
For any spatial unit, the general form of the probability equation of the NB formulation can be 

written as follows: 

 

𝑃(𝑦𝑡 |𝑣𝑡, 𝜆𝑡′) =  
Γ (𝑦𝑡 +

1
𝜆𝑡′

)

Γ(𝑦𝑡 + 1)Γ (
1

𝜆𝑡′
)

(
1

1 + 𝜆𝑡′𝑣𝑡
)

1
𝜆𝑡′

(1 −
1

1 + 𝜆𝑡′𝑣𝑡
)

𝑦𝑡 

 (1)  

 

where, 𝑡 represents the different spatial units including segments (𝑠: 1,2 … . 𝑆 = 1,818), 

intersections (𝑖: 1,2 …  𝐼 = 4,184) and TAZs (𝑧: 1,2 … . 𝑍 = 300). 𝑦𝑡 be the index for crash counts 

occurring over a period of time in the corresponding spatial unit 𝑡 . 𝑃(𝑦𝑡) is the probability that 

unit 𝑡 has 𝑦𝑡 number of total crashes. 𝜆𝑡′ is NB over-dispersion parameter specific to the spatial 

unit 𝑡 and 𝑣𝑡 is the expected number of crashes occurring in 𝑡 over a given time period. This, 𝑣𝑡 

can be expressed as a function of explanatory variables using a log-link function. In our analysis, 

𝑣𝑡 at the zonal level is labelled as 𝑣𝑧; 𝑣𝑡 at the segment level is labelled as 𝑣𝑠 and 𝑣𝑡 at the 

intersection level is labelled as 𝑣𝑖. For the micro level specifications (segments and intersections), 

the formulation of 𝑣𝑠 and 𝑣𝑖 is collectively defined as follows: 

 

𝑣(𝑠,𝑖) = 𝐸(𝑦(𝑠,𝑖)|𝒙(𝑠,𝑖)) = 𝑒𝑥𝑝((𝜷𝑠,𝑖 + 𝝔(𝑠,𝑖))𝒙(𝑠,𝑖) +  𝜽𝑧 (𝑠,𝑖) + 𝜀(𝑠,𝑖)) (2)  

 

where, 𝑣(𝑠,𝑖) is the expected number of crashes that correspond to each micro level spatial unit 

(segments (s) and intersections (i)). 𝒙(𝑠,𝑖) is a vector of explanatory variables and 𝜷𝑠,𝑖 is a vector 

of mean coefficients to be estimated corresponds to the spatial unit(𝑠, 𝑖). 𝝔(𝑠,𝑖) is a vector of 

unobserved factors moderating the influence of attributes in 𝒙(𝑠,𝑖) on the total crash count 

propensity for analysis unit (𝑠, 𝑖).  𝜽𝑧(𝑠,𝑖) is a vector of unobserved effects specific to the zone for 

either segments or intersections highlighting the spatial arrangement of the segments and 

intersections within the same zone. This  𝜽𝑧(𝑠,𝑖) will be same across the spatial unit (𝑠, 𝑖) if they 
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correspond to same zone (TAZ) and thus the adjacency heterogeneity (dependency) will be 

captured through the proposed system. Finally, 𝜀(𝑠,𝑖) term represents a gamma distributed error 

term with mean 1 and variance 𝜆(𝑠,𝑖)′. 

The reader would note that, the spatial unobserved heterogeneity can vary across the spatial 

unit (𝑠, 𝑖). Therefore, in the current study, we parameterized the correlation parameter  𝜽𝑧 as a 

function of observed attributes as follows: 

 
 𝜽𝑧(𝑠,𝑖) = 𝜸𝑧(𝑠,𝑖)𝒔𝑧(𝑠,𝑖) (3)  

 

where, 𝒔𝑧(𝑠,𝑖) is a vector of exogenous variables at the zonal level 𝑧 (including a constant) 

employed for segment s or intersection i, 𝜸𝑧(𝑠,𝑖) is a vector of parameters to be estimated.  

Once the micro level propensities are estimated, we adopt two alternative approaches to 

estimate the zonal level expected number of crashes (𝑣𝑧) as presented in equation 4 and 5 

respectively.  

𝑣𝑧 = 𝐸(𝑦
𝑧
|𝑐𝑧) = 𝑒𝑥𝑝 ((∝ +𝝓

𝑧
)𝒄𝑧 + 𝜌

𝑠
∗ ln (∑(𝑣𝑠)

𝑆𝑧

𝑝=1

) + 𝜌
𝑖

∗ ln (∑(𝑣𝑖)

𝐼𝑧

𝑝=1

) + 𝜀𝑧) (4)  

𝑣𝑧 = 𝐸(𝑦
𝑧
|𝑐𝑧) = 𝑒𝑥𝑝 ((∝ +𝝓

𝑧
)𝒄𝑧 + 𝜌

𝑠
∗ ln (∑ (𝑒𝑥𝑝((𝜷

𝑠
+ 𝝔

𝑠
)𝒙𝑠 +  𝜽𝑧𝑠))

𝑆𝑧

𝑝=1

)

+ 𝜌
𝑖

∗ ln (∑ (𝑒𝑥𝑝((𝜷
𝑖

+ 𝝔
𝑖
)𝒙𝑖 +  𝜽𝑧𝑖))

𝐼𝑧

𝑝=1

) + 𝜀𝑧) 

(5)  

where, 𝒄𝑧 is a vector of exogenous variables at zonal level 𝑧, ∝ is a vector of mean parameters to 

be estimated. 𝝓𝑧 is a vector of unobserved factors moderating the influence of attributes in 𝒄𝑧 on 

the total crash count propensity for zone 𝑧. 𝜌𝑠 and 𝜌𝑖 is a scalar associated with the corresponding 

micro level spatial unit (segments and intersections) highlighting the share of each micro level 

propensities to be linked with the macro level propensities. p is a counter here ranging from 1 to 

𝑆𝑧 (𝐼𝑧) where 𝑆𝑧 (𝐼𝑧) represents the segments (intersections) in zone  𝑧. For example, if 5 segments 

are present in the zone 𝑧1, then we will sum the propensity for these 5 segments to obtain a value 

for 𝑧1 . 𝜀𝑧 is a gamma distributed error term with mean 1 and variance 𝜆𝑧′. The main difference 

between the two approaches is that the micro level propensities will remain fixed and only the 

scalar parameters will be estimated for approach 1. In the second approach, we allow the micro 

level parameters to be jointly influenced by microscopic and macroscopic fit.  

In estimating the model, it is necessary to specify the structure for the unobserved vectors 

 𝝔,  𝜽(𝑠,𝑖), 𝝓 represented by Ψ. In this paper, it is assumed that these elements are drawn from 
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independent normal distribution: Ψ~𝑁(0, (𝝅𝟐, 𝝈(𝑠,𝑖)
𝟐  , 𝜻𝟐)). Thus, conditional on Ψ, the likelihood 

function for approach 1 (equation 6) and 2 (equation 7) across TAZ can be expressed as follows:  

𝐿𝑧 =  ∫ 𝑃(𝑦
𝑧 

)
Ψ

𝑓(Ψ)𝑑Ψ (6)  

𝐿𝑧 =  ∫ 𝑃(𝑦
𝑧 

) ∗ ∏ 𝑃(𝑦
𝑠
)

𝑤𝑠

𝑆𝑧

𝑝=1Ψ

∗ ∏ 𝑃(𝑦
𝑖
)

𝑤𝑖

𝐼𝑧

𝑝=1

𝑓(Ψ)𝑑Ψ (7)  

where 𝑤𝑠 (𝑤𝑖) is a dummy variable taking a value of 1 if the corresponding zone 𝑧 has segments 

(intersections) in it or 0 otherwise. Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑧)

𝑧

 (8)  

All the parameters in the model are estimated by maximizing the joint logarithmic function 

𝐿𝐿 presented in equation 8. We apply Quasi-Monte Carlo simulation techniques based on the 

scrambled Halton sequence to approximate this integral in the likelihood function (with 150 draws) 

and maximize the logarithm of the resulting simulated likelihood function (See Bhat, 2001; 

Yasmin and Eluru, 2013 for more details). We tested the model with higher number of scrambled 

draws (200 and 250) and found the model estimation was stable. We use the GAUSS Matrix 

Programming software for estimating the models (Aptech, 2015).  

 

4 DATA PREPARATION 
The current research considers Orlando city region of Florida as the area of analysis, which is 

composed of 300 TAZs, 1,818 segments, and 4,184 intersections (see Figure 1). The study focuses 

on total crashes for the years 2018 and 2019. The crash frequency variables for the TAZs, segments 

and intersections were computed as a sum of crashes during 2018 and 2019. The data were 

compiled from the Signal Four Analytics databases. All the crash records were aggregated at TAZ 

level using the Geographic Information System (GIS). The crashes nearest to a TAZ were counted 

as the crashes of that TAZ. A 250 feet buffer around each intersection was created, and the spatial 

join tool was used to assign crashes into the intersections by intersecting crash map and intersection 

buffer map. The remaining crashes were assigned to road segments by using the proximity tool in 

GIS. In this process, a total of 42,086 TAZ crashes were classified into 30,886 intersection crashes 

and 11,200 segment crashes.  

 

4.1 Variables Considered 
A comprehensive set of independent variables including roadway, traffic, land-use, built 

environment, and sociodemographic characteristics are considered in our study. Information about 

these variables were collected from different data sources including Transportation Statistics 

Division of Florida Department of Transportation (FDOT), US Census Bureau, American 

Community Survey, and Florida Geographic Data Library databases. These explanatory variables 
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were aggregated at the zonal level using the GIS for macro level dataset. We have considered 

different spatial aggregations based on the independent variable specific data source. For example, 

sociodemographic data were extracted from US Census Bureau (American Community Survey) 

database at census tract level. In cases where the buffer area overlaps multiple census tracts, the 

data was aggregated by calculating the proportion of census tract area within that buffer area. 

Macro level analyses use roadway and traffic factors (such as proportion of roads by functional 

class, number of lanes, average speed limit, average shoulder width, average sidewalk width and 

median width, intersection density, traffic signal per intersection, AADT, and truck AADT), land-

use attributes (such as proportion of residential, commercial, institutional, industrial and 

recreational area), built environment characteristics (such as number of restaurants, business 

centers, commercial centers, educational centers, and shopping centers), and sociodemographic 

characteristics (such as population density, proportion of males and females, household density, 

median household income, proportion of car, drive alone, non-motorized means of transport, 

different population group by age level, household with vehicle availability, and population with 

different races). The micro level (segments and intersections) explanatory variables also include 

similar roadway and traffic factors, land-use, built environment, and sociodemographic variables. 

For segment level variables, roadway and traffic attributes were assigned to the segments by using 

the proximity tool in GIS. Aggregation of land-use, built environment, and sociodemographic 

variables for segments and intersections, and roadway and traffic variables for intersections were 

performed by intersecting maps of the attributes and 0.5-mile buffer map of respective facility 

types (segments and intersections). For modeling intersection data, it is customary to consider 

AADT data for major and minor roads. However, in our case, the AADT data was not available 

labelled as major and minor AADT. Hence, in our analysis, we considered 0.5-mile buffer area of 

an intersection as influence zone and generated the sum of AADT of all approaches to compute 

intersection AADT.  

Table 1 lists the independent variables with the appropriate definition considered for final 

model estimation along with the minimum, maximum, mean, and standard deviation (SD) values 

at both micro and macro level. For model estimation purposes, several functional forms of the 

variables were also considered. The variables that offered the best model fit were retained. The 

final specification includes the statistically significant variables at 90% confidence level. The 

reader would also note that the model estimation process carefully examined for potential 

collinearity/correlations across independent variables. The variable selection was finalized after 

ensuring the covariance across the independent variables is within an acceptable range post-model 

estimation.  

 

5 EMPIRICAL ANALYSIS  
 

5.1 Model Specification and Overall Measure of Fit1 
The empirical analysis involves a series of model estimations. First, we estimate the simple non-

integrated NB models at both micro (segment and intersection) and macro levels. Second, we 

 
1  The reader would note that an exhaustive estimation process was implemented to test for parameter stability across 

2018 and 2019. In this estimation process, information for traffic, land-use and sociodemographic factors were 

considered separately for each year. However, the information on the roadway and built environment factors were 

considered from 2019 data only as this information was not available for 2018. The estimation steps considered 

included: (1) estimating two separate model systems for 2018 and 2019 and comparing their performance relative to 

the performance of the pooled model system (combining 2018 and 2019), (2) considering for the influence of 
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estimate an existing integrated micro-macro model, as proposed by Cai et al. (2019). Third, we 

developed our proposed integrated system following two approaches: a) integrated model 1: 

focusing on optimizing the macroscopic model data fit by only estimating the scalar parameter 

while fixing the micro level parameters; and b) integrated model 2: the microscopic parameters 

are estimated based on their contribution to microscopic model directly and the macroscopic model 

via the microscopic propensity component in the macroscopic model. Fourth, we identify the best 

model by comparing model performance based on Bayesian Information Criterion (BIC). The BIC 

for a given empirical model is equal to: 

BIC= -2LL+K ln (Q) (9)  

where LL is the log-likelihood value at convergence, K is the number of parameters and Q is the 

number of observations. The model with the lower BIC is the preferred model.  

Finally, we incorporate unobserved heterogeneity in terms of spatial variations and random 

effects in the model selected in the fourth step and compare its performance with the models 

without unobserved heterogeneity.  

The corresponding BIC (LL) values are: (1) non-integrated models (with 29 parameters): 

34,798.048 (-17,316.319), (2) existing integrated micro-macro model (with 20 parameters): 

34,782.556 (-17,334.240), (3a) integrated model 1 (with 24 parameters): 34,765.831 (-

17,314.470), (3b) integrated model 2 (with 23 parameters): 34,787.607 (-17,328.210), and (4) 

integrated model 1 with unobserved heterogeneity (with 28 parameters): 34,297.126 (-

17,068.710). Based on these BIC values, three specific observations could be drawn. First, all the 

integrated systems (our proposed two approaches and the existing integrated approach) provide 

improved data fit as evidenced by the lower BIC values in comparison to the non-integrated model. 

Second, within the integrated systems, our proposed model 1 provides the lowest BIC indicating 

the best data fit in comparison to the other models. The performance of the other two integrated 

models (our proposed model 2 and existing integrated model) are quite close to each other as 

highlighted by the marginal differences in BIC across these models. Finally, we accommodate 

unobserved heterogeneity in our integrated model 1 (the best model in terms of data fit) and find 

that the model accommodating unobserved heterogeneity provides further improved BIC (lower) 

compared to its independent counterpart, thus reinforcing the importance of incorporating the 

influence of common unobserved factors in crash frequency analysis.  

 

5.2 Model Estimation Results 
In this section, we will discuss the factors affecting crash counts across macro and micro levels. 

For the sake of brevity, we will only discuss the results of the best fit model identified above. Table 

2 presents the model estimation results for the proposed integrated micro-macro model 1 with 

 
unobserved heterogeneity specific to the year indicator variable in the pooled dataset and (3) various systematic 

interactions of the independent variables with the year indicator variable. The results from these efforts indicated that 

temporal instability was not detected for our dataset. While this was a surprising finding, it is possible that the time 

frame of 2 years might is too small to affect parameter stability in our context. The documentation of the temporal 

parameter stability is summarized in the Supplemental Documentation (Table S1). It would be interesting to explore 

the temporal stability finding using data from additional years as a specific direction of future research. Given this 

finding, for ease of model estimation, the models were considered as a single observation for each spatial unit across 

the two years for our analysis (while considering a year offset variable of 2). 
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correlation and random effects (please refer to the supplementary material for results of the simple 

non-integrated models, Table S2). It is to be noted that a positive (negative) sign for a variable in 

the crash counts of Table 2 indicates that an increase in the variable is likely to result in more (less) 

crashes. 

 

5.3 Crash Specific Constants 
The model constants do not have any substantive interpretation. 

 

5.4 Segment Level Attributes  
The segment level model shows that the parameter associated with the segment length has a 

positive impact on crash frequency. The result is consistent with the expectation because the longer 

road segment is correlated with higher exposure between drivers, and other road users. The result 

is similar to some other studies (Alhomaidat et al., 2020; Mohammadnazar et al., 2021; Yu et al., 

2019; Zeng et al., 2020). The parameters for number of lanes and average inside shoulder width 

also show positive association with crash frequency. This is intuitive as the roads with higher 

number of lanes usually have higher traffic volume, higher lane change rates and conflict risk 

resulting in higher number of crashes. Inside shoulder may provide shelter for emergency stop and 

pull over. However, stopped vehicles may be hazardous and contribute to certain type of crashes 

(for example, rear end crashes), especially on freeways. Moreover, wider shoulders may encourage 

higher operating speeds which can also increase crash risk (Stamatiadis et al., 2009). We also 

found that average inside shoulder width has significant variability as indicated by the standard 

deviation parameter in Table 2. This distributional parameter indicates that the overall impact of 

the variable on crash count at segment level is likely to be positive (95.35%). The parameter 

associated with average sidewalk width shows negative effect on segment level crash count. The 

presence of wider sidewalks provides additional safety for non-motorists from colliding with a 

motorized vehicle and thus contributes to a lower risk (Bhowmik et al., 2019). An increase in 

traffic signal per unit road length increases the likelihood of crashes. This is intuitive as a higher 

number of traffic signals may lead to an increase in certain types of crashes (such as rear-end 

crashes) in dilemma zones (Abdel-Aty and Wang, 2006; Lee et al., 2017; Park et al., 2020). In 

addition, AADT is found to be positively associated with crash frequency. The results indicate that 

the segments with higher AADT have higher likelihood of crashes. This result is consistent with 

previous studies (Alarifi et al., 2017; Alhomaidat et al., 2020; Cai et al., 2019; Huang et al., 2016; 

Mohammadnazar et al., 2021; Satria et al., 2020; Veeramisti et al., 2021; Wang et al., 2020). The 

land-use mix variable indicates crash count is negatively associated with land-use mix. The result 

indicates that segments in the vicinity of mixed land-use developments (residential, industrial, 

institutional, commercial, and recreational areas) are likely to experience lower crash risk 

potentially because of reduced driving speeds. 

 

5.5 Intersection Level Attributes  
In the intersection level model, the parameter associated with the proportion of interstate-

expressway roads at the intersection has a negative impact on intersection crashes. It is possible 

that these roadways are well maintained in terms of pavement quality, lighting and enforcement 

improving overall safety. As the length of bike lane in the vicinity of the intersection increases, 

the number of crashes is likely to reduce. The result is quite interesting and might be important for 

encouraging bike infrastructure additions. It is possible that there might be self-selection at play 

as well. Specifically, it is possible that bike lanes are added on safer roadways.  
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As expected, the parameter associated with AADT has a positive impact on intersection 

crash frequency. This finding is in line with previous studies (Alarifi et al., 2018, 2017; Cai et al., 

2019; Huang et al., 2016; Park et al., 2020; Saha et al., 2020; Veeramisti et al., 2021). The AADT 

parameter also exhibits significant variation across intersections as evidenced by the significant 

random parameter. The overall impact of this variable on crash count at an intersection level is 

likely to be overwhelmingly positive (99.99%). 

 

5.6 Macro Level Attributes  
Several variables influenced the macroscopic model including the micro level propensity 

component for segments and intersections. The coefficients for the scalar parameters for segments 

and intersections are positive as expected indicating that an increase in propensity of micro level 

crashes contributes to an increase in macro level crash frequency.  

Among other zonal variables considered, average speed limit in the zone is associated with 

increased crash risk. The findings indicate that higher average speeds are associated with higher 

number of crashes. The result while counter intuitive should be carefully considered. Usually, on 

freeways or larger facilities, higher speed limits are likely to reduce crashes. However, in a zone 

with mixed facility type, higher average speed might highlight increased speed transitions and 

potential conflicts. In addition, the variable truck AADT is associated with increased crash risk. 

An increased presence of trucks in the zone can affect traffic flow and increase speed variance 

leading to higher number of crashes. Trucks are also likely to reduce visibility for other vehicles 

and might increase crash risk (Cui and Xie, 2021; Xie et al., 2017). 

An increase in zonal commercial area is associated with higher crash risk. The result might 

indicate that commerce related activities such as loading/unloading, movement of heavy vehicles 

and increased traffic conflicts might contribute to higher crash risk (Cui and Xie, 2021; 

Mohammadnazar et al., 2021; Soroori et al., 2019; Xie et al., 2019). In terms of household density, 

the model results indicate that increased density is associated with higher crash risk. The result is 

quite intuitive and indicates as density increases, traffic is likely to increase and contribute to 

additional crash risk. Interestingly, a random parameter associated with household density 

indicates significant variability in the risk associated with household density. To be sure, while the 

impact of the variable varies across zones, the net impact is predominantly positive (99.99%). 

Finally, the zones with higher portion of African-American minorities are associated with higher 

crash risk. The result is a potential manifestation of inadequate facilities in low-income and 

minority neighborhoods in the region.  

 

5.7 Unobserved Heterogeneity 
As discussed earlier, the proposed model system accommodates spatial variations for facilities in 

the zone through hierarchical correlations such as a correlation between all segments or 

intersections in a zone. The last two variables in Table 2 correspond to these correlations. The 

significant effect of these parameters clearly highlights the presence of common unobserved 

factors across facilities present in the same zone. The result further reinforces our hypothesis that 

incorporating such correlations in crash frequency analysis is important.  

 

5.8 Predictive Performance of the Model  
Along with the log-likelihood and BIC measures, we assess the predictive performance of the 

proposed integrated micro-macro model by comparing RMSE (Root mean square error) values 

with non-integrated macro model (the lower value represents better prediction result). The RMSE 
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values of the proposed integrated model and non-integrated macro model are 83.761 and 110.958, 

respectively. The aggregate measures clearly highlight the improved predictive performance 

offered by our proposed integrated approach. To further evaluate the predictive performance of 

the estimated models, we carried out a comparison exercise between the proposed integrated 

micro-macro model 1 with correlation and random effects and the non-integrated macro model by 

comparing RMSE values across different crash groups (see Figure 2). The exercise shows that our 

proposed model exhibits either lower or similar RMSE values compared to the non-integrated 

model across majority of the groups (13 out of 15). To be specific, the proposed integrated method 

provides significantly better performance across 9 crash groups while for other 4, the RMSE value 

for both models are quite close to each other. However, for the remaining two crash groups, the 

non-integrated model performs slightly better, as evidenced by the marginal differences in RMSE 

across the two systems. 

 

6 CONCLUSIONS 
Crashes at macroscopic level are usually generated by aggregating the crashes at microscopic 

level, still majority of the earlier research developed individual model systems for each of these 

levels while ignoring the interconnectedness between them. The current research contributes to the 

safety literature by integrating the two traditionally divergent streams of crash frequency research 

(micro and macro) into a unified framework while allowing the influence of independent variables 

at the microscopic level to be incorporated within the macroscopic propensity estimation. The 

single integrated model will allow us to employ a single model code for estimation of macroscopic 

and microscopic models. The model system proposed recognizes that crashes at the micro level 

facilities contribute to total macroscopic level crash counts. This influence is incorporated by 

adding the sum of crash propensity specific to each micro-facility (such as segments and 

intersections) in the form of an additional variable in the propensity of the macroscopic model 

system. Based on the introduction of the micro level component, two frameworks are proposed in 

the current research effort. In the first approach, we fix the microscopic models and accommodate 

for the cumulative propensity influence as any other independent variable. On the other hand, the 

second approach is developed while allowing the feedback between macroscopic and microscopic 

models through a joint log-likelihood function. For both approaches, a scale parameter is estimated 

for accommodating the share of each micro level propensities to be linked with the macro level 

propensities. The proposed model system also incorporates hierarchical correlations (like 

correlation between all segments or intersections in a zone) for considering the spatial variations 

for facilities in the zone. The overall model development process is achieved using a negative 

binomial regression framework at the micro and macro level. 

The empirical analysis is conducted using zonal, segment and intersection level crash count 

data for the years 2018 and 2019 from Orlando city of Florida while considering a comprehensive 

set of exogenous variables from both micro and macro levels including roadway and traffic factors, 

land-use, built environment, and sociodemographic characteristics. The empirical analysis 

involves a series of model estimations including: 1) non-integrated models; 2) existing integrated 

micro-macro model (proposed by Cai et al., 2019); 3) our proposed integrated approach 1 and 4) 

our proposed integrated approach 2. The comparison exercise, based on the Bayesian Information 

Criterion (BIC) value clearly highlighted the improved performance of our proposed integrated 

approach 1 relative to the other models. Further, within the proposed approach 1, the model 

accommodating unobserved heterogeneity outperforms its independent counterparts, thus 

highlighting the importance of incorporating the influence of common unobserved factors in crash 
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frequency analysis. The model estimation results are further augmented by the evaluation of the 

predictive performance of the proposed model. The findings further reinforce the superiority of 

our proposed model over the non-integrated system.  

The study is not without limitations. The proposed integrated approach requires compiling 

data collectively across all micro level facilities in the region. The compilation can be cumbersome 

for major urban regions as several small intersections and segments might lead to large datasets 

and substantial data processing resources. The crash frequency variable considered in our analysis 

combines all motorized crashes of various types and non-motorized crashes in a single variable. It 

would be interesting to examine crash frequency by crash type (and severity) as separate dependent 

variables to offer more reasonable interpretations of different variables on crash frequency. 

Further, as the methodology proposed is focused on crash frequency at a spatial aggregation (TAZ) 

or facility aggregation (segment or intersection), it is not possible to accommodate for driver 

behavior in our model system. It would be worthwhile to develop frameworks that can 

accommodate for such crash level variables in crash frequency models in future research efforts.  
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TABLE 1 Summary Statistics of the Exogenous Variables at Micro and Macro Level 
Variables Definition Min Max Mean SD 

Segment level (micro) 

Crash Segment crash 0.000 481.000 6.161 19.241 

Segment length Ln (Segment length in mile) -12.852 1.144 -2.758 1.770 

No of lanes No of lanes of the segment 1.000 5.000 2.128 0.720 

Average inside shoulder 

width 
Average inside shoulder width in feet 0.000 36.000 3.028 4.596 

Average sidewalk width Ln (Average sidewalk width in feet + 1) 0.000 2.708 1.789 0.491 

No of traffic signals per 

unit segment length 
No of traffic signals/ segment length in meter 0.000 474.048 0.862 13.620 

AADT Ln (AADT of the segment + 1) 6.686 12.095 9.987 0.891 

Land-use mix 

Land-use mix = [−
∑(𝑝𝑘(ln 𝑝𝑘))

ln 𝑁
], where k is the 

category of land-use, p is the proportion of 

the developed land area for specific land-use, 

N is the number of land-use categories; here 

N=5 

0.000 0.997 0.545 0.226 

Intersection level (micro) 

Crash Crash within 250 feet buffer intersection area 0.000 202.000 7.382 15.152 

Proportion of interstate 

and expressways 

Interstate and expressways length/total road 

length 
0.000 1.000 0.092 0.139 

Average bike lane 

length 
Average bike lane length in mile 0.000 0.472 0.014 0.024 

AADT Ln (AADT of the intersection + 1) 0.000 20.554 15.217 2.147 

TAZ level (macro) 

Crash TAZ crash 0.000 765.000 140.287 130.587 

Proportion of interstate 

and expressways 

Interstate and expressways length/total road 

length in TAZ area 
0.000 1.000 0.095 0.200 

Proportion of divided 

road 

Divided roads length/total road length in 

TAZ area 
0.000 1.000 0.610 0.357 

Average speed limit Average speed limit in mph 0.000 70.000 36.422 10.725 

Average sidewalk width Ln (Average sidewalk width in feet + 1) 0.000 2.646 1.775 0.506 

Intersection density No of intersections/ area of TAZ in acre 0.000 0.770 0.085 0.115 

Traffic signal per 

intersection 

No of traffic signal/total no of intersections in 

the TAZ 
0.000 1.000 0.058 0.106 

AADT Ln (AADT of TAZ + 1) 0.000 13.507 11.189 1.864 

Truck AADT Ln (Truck AADT of TAZ + 1) 0.000 11.302 8.326 1.613 

Proportion of heavy 

vehicle 
Total truck AADT/total AADT 0.000 0.170 0.056 0.024 

Proportion of 

residential area 
Residential area/total land-use area 0.000 0.989 0.412 0.326 

Proportion of 

commercial area 
Commercial area/ total land-use area 0.000 1.000 0.203 0.248 

No of restaurants Z score*: No of restaurants -0.597 6.690 0.000 1.000 

No of educational 

centers 
Z score: No of educational centers -0.649 3.879 0.000 1.000 

Household density No of households per acre TAZ area 0.084 8.621 2.016 1.574 

Non-motorized means 

of transport 
Ln (Non-motorized means of transport + 1) 0.000 5.366 2.152 1.166 

Proportion of African 

American population 

No of African American population/total 

population 
0.000 0.978 0.222 0.246 

*Z-score represents the standardized form of the actual variable 
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TABLE 2 Results of Proposed Integrated Micro-Macro Model  

Variables 
Proposed integrated macro-micro model 

Estimate t-stat 

Segment level (micro) 

Constant -0.813 -1.08 

Segment length 0.515 5.753 

No of lanes 0.179 2.389 

Average inside shoulder width 0.037 2.475 

Standard deviation* 0.022 1.746 

Average sidewalk width -0.210 -1.808 

No of traffic signals per unit segment length 0.025 4.24 

AADT 0.306 4.838 

Land-use mix -0.818 -3.191 

Over-dispersion parameter 2.189 11.727 

Intersection level (micro) 

Constant 0.922 3.964 

Proportion of interstate and expressways -0.400 -1.725 

Average bike lane length -3.263 -2.362 

AADT 0.030 1.992 

Standard deviation 0.007 1.986 

Over-dispersion parameter 3.000 39.23 

TAZ level (macro) 

Constant -2.730 -9.085 

Average speed limit 0.022 4.178 

Truck AADT 0.316 7.774 

Proportion of commercial area 0.439 3.623 

Household density 0.092 4.053 

Standard deviation 0.002 2.458 

Proportion of African American population 0.253 2.381 

Over-dispersion parameter 2.933 14.653 

Parameter for segment level propensity sum 0.226 7.809 

Parameter for intersection level propensity sum 0.497 10.007 

Unobserved heterogeneity 

Segment correlation 0.682 8.875 

Intersection correlation 0.739 17.948 

For proposed integrated micro-macro model: Log-likelihood: -17,068.710; BIC: 34,297.126 

* The standard deviation denotes random parameter associated with respective variable which indicates significant 

variation of the impact of that variable across the study level. 
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Supplementary Material 
 

TABLE S1: Results of Integrated Micro-Macro Models with 2018, 2019, and Pooled Records 

Variables 

Integrated 

macro-micro 

model (2018 

records) 

Integrated 

macro-micro 

model (2019 

records) 

Integrated 

macro-micro 

model (pooled 

records) 

Estimate t-stat Estimate t-stat Estimate t-stat 

Segment level (micro) 

Constant -0.412 -0.675 -0.550 -0.773 -0.456 -0.988 

Segment length 0.602 7.465 0.564 6.559 0.583 9.904 

No of lanes 0.133 1.890 0.229 2.879 0.183 3.398 

Average inside shoulder width 0.033 2.257 0.034 2.374 0.034 3.299 

Average sidewalk width -0.218 -1.828 -0.230 -1.917 -0.224 -2.650 

No of traffic signals per unit segment length 0.029 4.924 0.027 4.752 0.028 6.857 

AADT 0.290 5.717 0.276 4.502 0.280 7.098 

Land-use mix -0.678 -2.710 -0.662 -2.497 -0.671 -3.688 

Over-dispersion parameter 1.997 10.607 2.155 10.366 2.078 14.789 

Intersection level (micro) 

Constant 1.302 22.623 1.286 22.905 1.669 10.062 

Average inside shoulder width 0.017 1.805 0.018 1.953 0.031 3.903 

Average no of lanes -- -- -- -- -0.167 -2.086 

Proportion of local road -0.481 -1.668 -- -- -0.496 -2.234 

Proportion of institutional area -0.790 -2.558 -0.754 -2.379 -0.754 -3.404 

No of finance centers -- -- -0.067 -1.850 -0.058 -2.156 

Proportion of household with no vehicle -- -- -- -- -0.746 -1.964 

Over-dispersion parameter 3.898 33.837 3.808 34.049 3.843 47.857 

TAZ level (macro) 

Constant -3.035 -7.401 -2.513 -6.018 -2.794 -9.372 

Average speed limit 0.016 2.325 0.012 1.732 0.015 3.164 

Truck AADT 0.439 7.851 0.378 6.447 0.412 10.081 

Proportion of commercial area 0.688 3.863 0.608 3.991 0.677 5.706 

Household density 0.119 4.373 0.106 3.701 0.112 5.611 

Proportion of African American population 0.536 3.095 0.593 3.716 0.565 4.834 

Over-dispersion parameter 1.126 7.943 0.989 7.299 1.058 10.737 

Parameter for segment level propensity sum 0.234 4.697 0.295 4.413 0.259 6.087 

Parameter for intersection level propensity sum 0.432 7.885 0.441 7.318 0.430 10.816 

Number of parameters 23 23 26 

Log-likelihood -13,548.720 -13,645.050 -27,189.480 

Bayesian Information Criterion (BIC) value  54, 649.914 54,545.280 

Sample size 300 600 
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TABLE S2 Results of Non-Integrated NB Micro and Macro Models 

Variables 

Non-integrated NB model 

results 

Estimate t-stat 

Non-Integrated Segment level (micro) 

Constant -0.813 -1.08 

Segment length 0.515 5.753 

No of lanes 0.179 2.389 

Average inside shoulder width 0.037 2.475 

Average sidewalk width -0.210 -1.808 

No of traffic signals per unit segment length 0.025 4.24 

AADT 0.306 4.838 

Land-use mix -0.818 -3.191 

Over-dispersion parameter 2.189 11.727 

Log-likelihood: -4,238.812; BIC: 8,545.174 

Non-Integrated Intersection level (micro) 

Constant 0.922 3.964 

Proportion of interstate and expressways -0.400 -1.725 

Average bike lane length -3.263 -2.362 

AADT 0.030 1.992 

Over-dispersion parameter 3.000 39.23 

Log-likelihood: -11,617.002; BIC: 23,275.698 

Non-Integrated TAZ level (macro) 

Constant -6.422 -9.476 

Proportion of interstate and expressways -0.524 -2.716 

Proportion of divided road 0.457 3.286 

Average speed limit 0.026 2.575 

Average sidewalk width 0.256 1.758 

Intersection density 1.709 3.347 

Traffic signal per intersection 0.623 2.213 

AADT 0.696 12.138 

Proportion of heavy vehicle 2.655 1.743 

Proportion of residential area 0.248 1.954 

No of restaurants 0.273 5.788 

No of educational centers 0.123 3.301 

Non-motorized means of transport 0.085 2.758 

Proportion of African American population 0.447 3.498 

Over-dispersion parameter 3.019 15.261 

Log-likelihood: -1,460.505; BIC: 3,006.567 

Non-integrated (combining micro and macro) models: Log-likelihood: -17,316.319; BIC: 34,798.048 

 
 

 

 

 

 

 

 
 


