
 

Exploring Analytical, Simulation-Based, And Hybrid Model Structures For 

Multivariate Crash Frequency Modeling 

 

Tanmoy Bhowmik 

Postdoctoral Scholar 

Department of Civil, Environmental & Construction Engineering 

University of Central Florida 

Tel: 1-407-927-6574; Fax: 1-407-823-3315 

Email: tanmoy78@knights.ucf.edu 

ORCiD number: 0000-0002-0258-1692 

 

 

 

Moshiur Rahman 

Ph.D. 

Department of Civil, Environmental & Construction Engineering 

University of Central Florida 

Tel: 321-276-7580, Fax: 407-823-3315 

Email: moshiur@knights.ucf.edu 

 

 

 

Shamsunnahar Yasmin 

Research Fellow – Road Safety Engineering 

Centre for Accident Research & Road Safety – Queensland (CARRS-Q) 

Faculty of Health 

Queensland University of Technology (QUT) 

130 Victoria Park Road, Kelvin Grove, QLD, 4059, Australia 

Email: shams.yasmin@qut.edu.au 

Telephone: +61731384677 

ORCiD number: 0000-0001-7856-5376 

 

 

 

Naveen Eluru 

Professor 

Department of Civil, Environmental & Construction Engineering 

University of Central Florida 

Tel: 407-823-4815, Fax: 407-823-3315 

Email: naveen.eluru@ucf.edu 

ORCiD number: 0000-0003-1221-4113 

 

 

 

 

 

*Corresponding author 

mailto:tanmoy78@knights.ucf.edu
mailto:moshiur@
mailto:shams.yasmin@qut.edu.au
mailto:naveen.eluru@ucf.edu


2 

 

ABSTRACT 
In safety literature, there are two ways to incorporate the potential correlation between multiple 

crash frequency variables: (1) simulation-based approach and (2) analytical closed-form 

approach. The current research effort undertakes a comparison between simulation-based 

multivariate model and copula based closed-form approach to analyze zonal level crash counts 

for different crash types. Further, the research builds on earlier copula based models by 

incorporating random parameters thus proposing a hybrid (combination of analytical and 

simulation based system) approach to incorporating unobserved heterogeneity. Within the 

proposed hybrid copula model, the empirical analysis involves estimation of count models 

using four different copula structures which cover a wide range of dependency structures, 

including radial symmetry and asymmetry, and asymptotic tail independence and dependence. 

Further, to the best of authors’ knowledge, this study is the first of its kind to incorporate 

attribute variability (random parameters) effect within the copula framework. The empirical 

analysis is based on traffic analysis zone (TAZ) level crash count data for both motorized and 

non-motorized crashes from Central Florida for the year 2016. A comprehensive set of 

exogenous variables including roadway, built environment, land-use, traffic, socio-

demographic and spatial spillover characteristics are considered for the analysis. The resulting 

data fit and prediction performance offered by the proposed approach clearly highlights the 

hybrid model - Random Parameter Copula based approach’s superiority over the purely 

simulation-based multivariate model in our study context. The comparison exercise is further 

augmented by undertaking an in-depth comparison for different count events across different 

crash types and a correct classification analysis. The estimated results further reinforce the 

improved performance of the Random Parameter Copula-based multivariate approach. The 

applicability of the model for hot spot identification is illustrated by generating plots 

identifying high-crash and low- crash zones by crash type in the Central Florida region.   

 

Keywords: Simulation approach; Closed-form approach; Dependency; Copula; Crash types; 

Comparison exercise; and random parameters within Copula. 
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1 BACKGROUND 
Given the impact of road traffic crashes on the society, it is not surprising that safety researchers 

are continually investigating approaches for crash occurrence reduction and crash consequence 

mitigation. In this research, we limit ourselves to approaches dealing with crash occurrence 

reduction. Econometric crash prediction models are typically employed for examining crash 

counts either at the micro (intersection or segment) or the macro-level (county or traffic 

analysis zone). The micro-level analysis aims to suggest specific geometric design and/or 

engineering solutions to reduce the number of crashes for the examined road entities while the 

macro-level studies are useful from a transportation planning perspective providing regional 

hotspot identification and remedial solutions. The various crash frequency dimensions 

explored in existing literature include total crashes, crashes by severity, crashes by collision 

type and crashes by vehicle type for a spatial unit over a given time period (Abdel-Aty et al., 

2005; Lee et al., 2015; Wang et al., 2017).  In recent decades, substantial progress in 

analysing crash frequency models has been made. Earlier research efforts typically adopted a 

univariate framework to study a single crash frequency variable (such as total crashes) or 

multiple crash frequency variables (such as crash frequency by injury severity). Univariate 

approaches are not appropriate for modeling multiple dependent variables for the same 

observational unit as these approaches do not account for common unobserved heterogeneity 

affecting the various dependent variables (see (Mannering et al., 2016) for a detailed review). 

Recognizing this drawback, several research efforts in recent years have been conducted to 

accommodate for the potential dependency across multiple dependent variables for each 

observational unit (Anastasopoulos, 2016; Mannering et al., 2016; Nashad et al., 2016). In these 

multivariate approaches, propensity equations for multiple dependent variables are developed 

to accommodate for the impact of observed factors. These propensity equations traditionally 

take the form of a negative binomial or log-normal formulation. These multivariate approaches 

can broadly be classified along two major streams: (1) simulation-based approaches and (2) 

analytically closed-form based approaches.  

The main difference between these two streams lies in how the dependency across 

dimensions is captured. In simulation-based approaches, the different propensities are 

correlated by generating a common error term across dimensions. For each realization of the 

common error term, the likelihood function (or posterior probability in Bayesian regime) is 

computed. However, given the inherently unobserved nature of the error term, an appropriate 

distributional assumption is necessary to generate a population function. For this reason, 

multiple error term draws are generated, and the likelihood function values are averaged across 

these repetitions. The accuracy of the approach is affected by number of dimensions as well as 

number of draws considered for the function evaluation. Further, the stability of the variance-

covariance matrix is often sensitive to model specification and number of simulation draws 

(see (Bhat, 2011) for a discussion). In closed-form based approaches, the propensity equations 

for frequency dimensions are tied together by analytical multivariate distributional 

assumptions. For example, the different propensity error terms are assumed to follow a 

multivariate distribution or a more general copula distribution. Thus, whenever permissible, 

such model formulation yields an analytical formula for the probability computation  (Bhat and 

Eluru, 2009; Nashad et al., 2016; Wang et al., 2019). These models can be estimated using 

traditional maximum likelihood approaches. In some cases, where such formulas are of very 

high dimensions they might not be analytically tractable. In this case, an alternative approach 

that approximates the analytical probability is adopted. A commonly used such approximation 

approach involves composite maximum likelihood frameworks (Bhat, 2014, 2011; 

Narayanamoorthy et al., 2013).  
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A summary of research efforts from the two streams described above are presented in 

Table 1 with information on the study unit, methodological framework, estimation technique, 

dependent variables and the number of dimensions employed. From the table, several 

observations can be made. First, simulation approaches employ maximum simulated likelihood 

approach (MSL) in the classical framework and Markov Chain Monte Carlo (MCMC) 

approach in the Bayesian realm for model estimation. Second, within the simulated framework, 

various model structures developed include multivariate Poisson regression model, 

multivariate Poisson lognormal model, multinomial-generalized Poisson model, multivariate 

Poisson gamma mixture count model, multivariate Poisson lognormal spatial and/or temporal 

model, grouped random parameter multivariate spatial model, Integrated Nested Laplace 

Approximation Multivariate Poisson Lognormal model,  Bayesian latent class flexible mixture 

multivariate model,  flexible Bayesian semiparametric approach and multivariate random-

parameters zero-inflated negative binomial model. Third, an alternative framework that builds 

on the fractional split model (see (Bhowmik et al., 2019a; Yasmin and Eluru, 2018) for details 

of fractional split approach) has also been identified as a credible alternative to the traditional 

multivariate approaches. Instead of using propensity per dimension, exogenous variable affects 

all dependent variables through a unified mechanism thus offering a more parsimonious 

specification. Fourth, only a small number of studies – 3 studies to be precise - have employed 

the closed-form approach for developing multivariate models in crash frequency analysis. 

Fifth, it is important to recognize that the analytical approach based systems are geared toward 

accommodating for the influence of unobserved factors across multiple dependent variables. 

However, in these approaches, the influence of unobserved factors on the individual dependent 

variables in the form of random parameters are rarely considered. Finally, the various 

independent variables examined include roadway, traffic, land-use, sociodemographic and 

socioeconomic characteristics.  

 

1.1 Current Study 
From the literature review, it is evident that simulation-based approaches are more commonly 

employed in crash frequency analysis. The preponderance of simulation-based approaches can 

be attributed to advancements in simulation approaches and enhanced access to computing 

power (Bhowmik, 2020). These simulation-based approaches accommodate for (1) common 

unobserved factors affecting each dependent variable by allowing for random parameters and 

(2) common unobserved factors affecting multiple dependent variables by allowing for 

correlations across dependent variables. More recently, closed-form copula-based approaches 

are suggested as a viable alternative to modeling crash frequency. The likelihood function, 

while analytically closed-form, is complicated in the copula regime. Given the analytical 

formulation these frameworks rely on maximum likelihood (as opposed to maximum simulated 

likelihood) and are less prone to error. However, in these approaches, unobserved heterogeneity 

in the form of random parameters is rarely considered as it will introduce simulation within a 

complex analytical formulation. To elaborate, current copula model systems assume that all 

the exogenous variables have the same influence on crash count propensity across the entire 

population. However, in some cases, this assumption might be erroneous. For example, let us 

consider the effect of average sidewalk width on non-motorized crash counts. Increased 

sidewalk width is associated with higher pedestrian activity (exposure) and as a result possibly 

more crashes. However, at the same time, the presence of sidewalk provides additional safety 

to the non-motorists from colliding with a motorized vehicle. Also, the higher number of 

pedestrian and bicyclist on the road might make the drivers more familiar with pedestrian 

activity and thus more cautious in their driving behavior that potentially could result in a 

reduced number of non-motorized crashes. Therefore, the effect of sidewalk width could be 

different across the TAZs and it is useful to allow for the effect of sidewalk width on non-
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motorized crash counts to vary across TAZs by considering a distributional assumption across 

the TAZs. The proposed effort develops a random parameter copula model structure that builds 

an approach for employing an analytical multivariate model embedded within a simulation 

framework for crash frequency analysis. Subsequently, we compare the performance of the 

proposed model (random parameter copula models) with the most commonly employed 

simulation-based approach and analytical closed-form copula models. To the best of authors’ 

knowledge, this study is the first of its kind to incorporate attribute variability (random 

parameters) effect within the copula framework for crash frequency analysis. For the 

comparison exercise, a negative binomial kernel is employed across all model structures. The 

reader would note that the comparison exercise could be extended to other model structures in 

a straightforward fashion.  

The empirical analysis is based on the traffic analysis zone (TAZ) level crash count 

data for both motorized and non-motorized crashes from Central Florida for the year 2016. The 

crash data for 4,747 TAZs were sorted into the following four categories: (1) motorized 

intersection crashes, (2) motorized road segment crashes, (3) motorized off-road crashes and 

(4) non-motorized crashes. Using the four crash categories defined, we compare the 

performance of the random parameter multivariate negative binomial model with random 

parameter copula-based multivariate negative binomial model. Within the copula framework, 

we estimate models for four copula structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe 

"(see discussion on copula structures below). We examine the performance of these two 

frameworks in terms of model fit and prediction power for two datasets 1) estimation sample 

(records that are used for analysis - 3,800 TAZs) and 2) validation sample (set aside for 

validation analysis - 947 TAZs). In our models, we consider exogenous variables from roadway 

characteristics, land-use attributes, built environment characteristics, traffic characteristics, 

sociodemographic characteristics, and spatial spillover effects. The model comparison exercise 

is augmented with spatial representation of high-crash and low-crash zones by crash type for 

policy implications and prioritizations.   

The rest of the paper is organized as follows: The next section presents the 

methodological framework adopted in the analysis while section 3 provides a detailed 

description of the dataset. Model findings are offered in the fourth section followed by the 

comparison results (by evaluating predictive performance) and spatial distribution in section 5 

and 6 respectively.  Finally, a summary of model findings and conclusions are presented in 

Section 6. 

 

2 METHODOLOGY 
In this section, we briefly provide details of the model frameworks employed in our study. The 

model structure description order is as follows: (a) independent negative binomial model, (b) 

Simulation-Based Random Parameter Multivariate NB (RPMNB) Model, (c) Copula-Based 

Multivariate NB Model and (d) Copula-Based Random Parameter Multivariate NB Model. The 

mathematical frameworks build on simpler approaches whenever appropriate.  

 

2.1  Independent Negative Binomial (NB) Model 
Let us assume that 𝑖 (𝑖 = 1,2,3, … , 𝑁, 𝑁 = 3,800) be the index for TAZ. Let 𝑗 be the index 

representing different crash type, where (𝑗 = 1,2, … , 𝐽, 𝐽 = 4 ), the index 𝑗 may take the values 

of motorized intersection (𝑗 =1), motorized road segment (𝑗 =2), motorized off-road (𝐽 =3) 

and non-motorized (𝑗 =4) crashes. Using these notations, the equation system for modeling 

crash count across different crash type 𝑗 in the usual negative binomial (NB) formulation 

(Bhowmik et al., 2018; Yasmin and Eluru, 2018) can be written as: 
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𝑃(𝑐𝑖𝑗|𝜇𝑖𝑗 , 𝛼𝑗) =  

Γ (𝑐𝑖𝑗 +
1
𝛼𝑗

)

Γ(𝑐𝑖𝑗 + 1)Γ (
1
𝛼𝑗

)
(

1

1 + 𝛼𝑗𝜇𝑖𝑗
)

1
𝛼𝑗

(1 −
1

1 + 𝛼𝜇𝑖𝑗
)

𝑐𝑖𝑗

 (1)  

where, 𝑐𝑖𝑗 be the index for crash counts specific to crash type 𝑗 occurring over a period of time 

in TAZ 𝑖. 𝑃(𝑐𝑖𝑗) is the probability that TAZ 𝑖 has 𝑐𝑖𝑗 number of crashes for crash type 𝑗. Γ(∙) 

is the gamma function, 𝛼𝑗 is NB over dispersion parameter and 𝜇𝑖𝑗 is the expected number of 

crashes occurring in TAZ 𝑖 over a given time period for crash type 𝑗. Given this set up, the 

mathematical formulations of the econometric frameworks considered in the current study 

context is presented in this section. 

With the NB probability expression as presented in equation 1, we can express 𝜇𝑖𝑗 as a 

function of explanatory variables by using a log-link function as follows: 

𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗) (2)  

where, 𝒛𝑖𝑗 is a vector of explanatory variables associated with TAZ 𝑖 and collision type 𝑗. 𝜹𝑗 is 

a vector of coefficients to be estimated. 𝜀𝑖𝑗 is a gamma distributed error term with mean 1 and 

variance 𝛼𝑗.  

Thus, the likelihood function for the probability can be expressed as: 

𝐿𝑖,𝑗 = 𝑃(𝑐𝑖𝑗) (3)  

Finally, the log-likelihood function is:       

𝐿𝐿𝑗 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (4)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 4. 

 

2.2 Simulation-Based Random Parameter Multivariate NB (RPMNB) Model 
The focus of RPMNB (referred as multivariate NB model in the following sections for 

simplicity) model is to examine number of crashes across different collision types jointly. As 

we consider four different crash types in the current analysis, in estimating RPMNB model, we 

examine four different NB models for four different collision types simultaneously. The 

expected crash counts TAZ 𝑖 over a given time period for crash type 𝑗 presented in equation 2 

is updated in the RPMNB model (Bhowmik et al., 2019b, 2018) as following: 

𝜇𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒛𝑖𝑗) = 𝑒𝑥𝑝((𝜹𝑗  + 𝜻𝑖𝑗)𝒛𝑖𝑗 + 𝜀𝑖𝑗 + 𝜂𝑖𝑗) (5)  

where, 𝜻𝑖𝑗 is a vector of unobserved factors on crash count propensity associated with crash 

type 𝑗 for TAZ 𝑖 and its associated zonal characteristics, assumed to be a realization from 

standard normal distribution: 𝜻𝑖𝑗~𝑁(0, 𝝅𝑗
2). 𝜂𝑖𝑗 captures unobserved factors that 
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simultaneously impact number of crashes across different crash types for TAZ 𝑖. Here it is 

important to note that the unobserved heterogeneity between total number of crashes across 

different crash types can vary across TAZs. Therefore, in the current study, the correlation 

parameter 𝜂𝑖𝑗 is parameterized as a function of observed attributes as follows: 

𝜂𝑖𝑗 = 𝜸𝒋𝒔𝑖𝑗  (6)  

where, 𝒔𝑖𝑗 is a vector of exogenous variables, 𝜸𝒋 is a vector of unknown parameters to be 

estimated (including a constant). In the current analysis, the RPMNB model only allows for a 

positive correlation for total number of crashes across different crash types.  

In examining the model structure of crash count across different crash types, it is 

necessary to specify the structure for the unobserved vectors 𝜻 and 𝜸 represented by Ω. In this 

paper, it is assumed that these elements are drawn from independent normal distributions: 

Ω~𝑁(0, (𝝅𝑗
𝟐, 𝝈𝑗

2)). Thus, conditional on Ω, the likelihood function for the joint probability 

can be expressed as: 

𝐿𝑖 = ∫ ∏ (𝑃(𝑐𝑖𝑗))

𝐽

𝑗=1𝛀

𝑓(𝛀)𝑑𝛀 (7)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (8)  

All the parameters in the model are estimated by maximizing the logarithmic function 

𝐿𝐿 presented in equation 8. The parameters to be estimated in the RPMNB model are: 𝜹𝑗, 𝛼𝑗, 

𝝅𝑗, and 𝝈𝒋.  

 

2.3 Copula-Based Multivariate NB Model 
The focus of our study is to estimate a copula-based multivariate NB modeling framework (see 

(Bhat and Eluru, 2009; Yasmin et al., 2018b) for a detailed description on copula framework). 

The econometric framework for the copula-based model is presented in this section. Let’s 

assume 𝑣𝑖𝑗 is the expected number of crashes occurring in TAZ 𝑖 over a given time period for 

crash type 𝑗. We can express 𝑣𝑖𝑗 as a function of explanatory variable (𝒙𝑖𝑗) by using a log-link 

function as: 𝑣𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒙𝑖𝑗) = 𝑒𝑥𝑝(𝜷𝑗𝒙𝑖𝑗), where 𝜷𝑗 is a vector of parameters to be estimated 

specific to crash type 𝑗.   

The correlation or joint behavior of random variables 𝑐𝑖1, 𝑐𝑖2,…𝑐𝑖𝑀 are explored in the 

current study by using a copula-based approach. A copula is a mathematical device that 

identifies dependency among random variables with pre-specified marginal distribution (Bhat 

and Eluru, 2009) provide a detailed description of the copula approach). In constructing the 

copula dependency, let us assume that 𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝐽(𝑐𝑖𝐽) are the marginal distribution 

functions of the random variables 𝑐𝑖1, 𝑐𝑖2,…𝑐𝑖𝑀, respectively; and 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) is the 

M variate joint distribution with corresponding marginal distributions. Subsequently, the M 

variate distribution 𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) can be generated as a joint cumulative probability 

distribution of uniform [0, 1] marginal variables 𝑈1, 𝑈2 ... 𝑈𝐽 as below: 
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𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) = 𝑃𝑟( 𝑈1 ≤ 𝑐𝑖1,  𝑈2 ≤ 𝑐𝑖2 …  , 𝑈𝑀 ≤ 𝑐𝑖𝐽) 

= 𝑃𝑟[𝛬1
−1(𝑈1) ≤ 𝑐𝑖1,  𝛬2

−1(𝑈2) ≤ 𝑐𝑖2 …  , 𝛬𝑀
−1(𝑈𝑀) ≤ 𝑐𝑖𝐽 ]  

= 𝑃𝑟[𝑈1 < 𝛬1(𝑐𝑖1),  𝑈2 < 𝛬2(𝑐𝑖2) … ,  𝑈𝑀 < 𝛬𝑀(𝑐𝑖𝐽) ] 

(9)  

The joint distribution (of uniform marginal variable) in equation 2 can be generated by 

a function 𝐶𝜃𝑖(. , . ) such that: 

𝛬12…𝑀(𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽) = 𝐶𝜃𝑖(𝑈1 = 𝛬1(𝑐𝑖1), 𝑈2 = 𝛬2(𝑐𝑖2) … ,  𝑈𝐽 = 𝛬𝑀(𝑐𝑖𝐽) ) (10)  

where, 𝐶𝑖𝜃(. , . ) is a copula function and 𝜃𝑖 is the dependence parameter defining the link 

between 𝑐𝑖1, 𝑐𝑖2, … 𝑐𝑖𝐽. In the case of continuous random variables, the joint density can be 

derived from partial derivatives. However, in our study, 𝑐𝑖𝑗 are nonnegative integer valued 

events. For such count data, following (Cameron et al., 2004), the probability mass function 

(𝜚𝑖𝜃) is presented (instead of continuous derivatives) by using finite differences of the copula 

representation as follows: 

𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)) 

= ∑ ∑ … ∑ (−1)𝑎1+𝑎2+...  𝑎𝐽

2

𝑎𝐽=1

2

𝑎2=1

2

𝑎1=1
[𝐶𝑖𝜃(𝛬1(𝑐𝑖1 + 𝑎1 − 2), 𝛬2(𝑐𝑖2 + 𝑎2

− 2) … 𝛬𝑀(𝑐𝑖𝐽 + 𝑎𝐽 − 2) ; 𝜃𝑖)] 

(11)  

The reader would note the probability in Equation 8 is written in terms of 2𝐽 copula 

evaluations (see (Eluru et al., 2010; Sener et al., 2010) for a similar derivation). The number of 

computations increases rapidly with the number of dependent variables (𝐽), but this is not much 

of a problem when the dependent variable number 𝐽 is 6 or less because of the closed-form 

structures of the copula function evaluation. Given the above setup, we specify 𝛬1(𝑐i1), 𝛬2(𝑐i2) 

… 𝛬𝑀(𝑐𝑖𝑀) as the cumulative distribution function (cdf) of the NB formulation. The cdf of NB 

probability expression (as presented in Equation 1) for 𝑐𝑖𝑗 can be written as: 

𝛬𝑗(𝑐𝑖𝑗|𝑣𝑖𝑗 , 𝛼𝑗) = ∑ 𝑃𝑖𝑗(𝑐𝑖𝑗|𝑣𝑖𝑗 , 𝛼𝑗)

𝑐𝑖𝑗

𝑘=0

 (12)  

Thus, the log-likelihood function (𝐿𝐿) with the joint probability expression in Equation 

7 can be written as: 

𝐿𝐿 = ∑ ln (𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)))

𝑁

𝑖=1

 (13)  

In the current empirical study, we employ Archimedean copulas that span the spectrum 

of different kinds of dependency structures including Frank, Gumbel, Clayton and Joe copulas. 

Figure 1 represents the graphical description of the implied dependency structures for the 4 
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considered copulas. Archimedean copulas, in their multivariate forms, allow only positive 

associations and equal dependencies among pairs of random variables. As seen from figure 1a, 

we can observe that Frank copula has a symmetric dependency structure that ensures higher 

dependency for unobserved variables around the mean of the distribution. On the other hand, 

Clayton copula can be applied when there is strong left tail dependence without any significant 

right tail dependency (as indicated by figure 1b). The Gumbel and Joe copulas (figure 1c and 

1d) offer the mirror image to Clayton copula by allowing for stronger dependency toward the 

right tails of the distribution. Between Joe and Gumbel copula, Joe copula allows for a stronger 

right tail dependency. In our empirical context, we hypothesize that Clayton copula will be best 

suited because it is likely that there is a stronger dependency across crash types at lower crash 

spectrum (compared to the higher end). 

It is important to note here that, the study allow the dependency structure to vary across 

TAZs. Therefore, in the current study, the dependence parameter 𝜃𝑖 is parameterized as a 

function of observed attributes as follows: 

𝜃𝑖 = 𝑓𝑛(𝝆 𝒘𝑖) (14)  

where, 𝒘𝑖 is a vector of exogenous variables, 𝝆  is a vector of unknown parameters to be 

estimated (including a constant). Based on the dependency parameter permissible ranges, 

alternate parameterization forms for the four Archimedean copulas are considered in our 

analysis. The parameters are estimated using maximum likelihood approaches. 

 

2.4 Copula-Based Random Parameter Multivariate NB Model 
Building on the model structure in 2.3, we consider the parameters to vary across the 

population. For this purpose, 𝑣𝑖𝑗 (expected number of crashes occurring in TAZ 𝑖 over a given 

time period for crash type 𝑗 ) equation from 2.3 is updated as follows: 

 𝑣𝑖𝑗 = 𝐸(𝑐𝑖𝑗|𝒙𝑖𝑗) = 𝑒𝑥𝑝((𝜷𝑗  + 𝛷𝑖)𝒙𝑖𝑗) (15)  

 

where 𝛷𝑖 is a vector of unobserved factors moderating the influence of attributes in 𝑥𝑖𝑗 on the 

crash count propensity for analysis unit 𝑖 and crash type 𝑗.  

In examining the model structure of crash count across different crash types, it is 

necessary to specify the structure for the unobserved vectors 𝛷 . In this paper, it is assumed 

that these elements are drawn from independent normal distributions: 𝛷~𝑁(0, 𝜈𝑗
2). Thus, 

conditional on 𝛷, the likelihood function for the joint probability can be expressed as: 

𝐿 = ∫ ln (𝜚𝑖𝜃 (𝛬1(𝑐𝑖1), 𝛬2(𝑐𝑖2) … 𝛬𝑀(𝑐𝑖𝐽)))
𝛷

𝑓(𝛷)𝑑𝛷 (16)  

Finally, the log-likelihood function is:       

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑁

𝑖=1

 (17)  

The model estimation routine is coded in GAUSS Matrix Programming software. 
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3 DATA PREPARATION 
Our study area includes the Central Florida region with 4,747 TAZs. The analysis is conducted 

using the 2016 crash records obtained from Florida Department of Transportation (FDOT) 

Crash Analysis Reporting System and Signal Four Analytics databases. At first, the crash data 

were sorted into two classes based on the road user group: motorist and non-motorist; further, 

within the motorized group, the records are classified into three categories based on the location 

of the crash: intersection, road segment and off-road. All the crash records are aggregated at a 

TAZ level using the Geographic Information System (GIS). A total of 112,376 motorized and 

3,413 non-motorized crashes were reported in the Central Florida for the year 2016. For the 

motorists, road segment was found to be most unsafe place (48.5%) followed by intersection 

(38.9%). Table 2 presents the summary statistics of crash type variables. Further, we have 

partitioned the zonal level records into two datasets: 1) 3,800 TAZs for model estimation and 

2) 947 TAZs for validation analysis. 

 

3.1 Variables Considered 
A host of exogenous variables including roadway, built environment, land-use, traffic and 

sociodemographic characteristics are considered for the current research effort (Bhowmik et 

al., 2019b, 2018). Information about the variables are gathered from FDOT Transportation 

Statistics Division, US Census Bureau, American Community Survey (ACS) and Florida 

Geographic Data Library (FGDL) databases. In addition to crash records, explanatory attributes 

are also aggregated at a zonal level using the GIS. Roadway attributes included are road lengths 

for different functional class, proportion of rural and urban road, proportion of road with 

different number of lanes (1, 2, and 3 or more), number of intersections and signals, mean and 

variance of speed limit, length of road with different speed limit (≤40mph, 41-54mph and 

≥55mph), average width of inside and outside shoulder, average width of bike lane and 

sidewalk. Land use attributes mainly provide the land use category information including area 

of urban, residential, industrial, institutional, recreational, office and land use mix while 

information about the number of business centers, commercial centers, schools, hospitals, 

recreational centers, restaurants and shopping centers are considered in the built environment 

characteristics. Further, for traffic characteristics, average annual daily traffic (AADT), 

average annual daily truck traffic (truck AADT), vehicle miles traveled (VMT), truck vehicle 

miles traveled (truck VMT) and proportion of heavy traffic are considered. In 

sociodemographic attributes, population and household density, proportion of means of 

transportation used by commuter for their work trips (car, transit, bike and walk) and proportion 

of household by vehicle ownership level (0, 1, 2, 3 and 4 or more) are included. Finally, in our 

analysis, to accommodate for spatial spillover effects we examined the characteristics of 

neighboring zones. Several research efforts have acknowledged the importance of spatial 

spillover effects (see (Aguero-Valverde and Jovanis, 2006; Cai et al., 2016; Quddus, 2008)). 

In safety literature, there are two ways to incorporate the effect of spatial effect: 1) Spatial error 

correlation and 2) Spatial spillover effect (see (Cai et al., 2016) for details). The current 

research effort follows the second method in which the dependency is captured through the 

observed attributes (Cai et al., 2016; Narayanamoorthy et al., 2013). For every zone, 

neighbouring zones are identified and based on the neighbouring zone, exogenous variables 

are estimated (similar to the actual TAZ). Across the dataset, the number of surrounding zones 

range from 1 to 21 with an average value of 6.43.  

Table 3 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, 

maximum and mean values at a segment level. While we estimated spatial spill-over variables 

for all variables, we only present the variables that offered significant effects in the model. 

Several functional forms and specifications for different variables are explored. The final 
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specification of the model development was based on removing the statistically insignificant 

variables in a systematic process based on 90% significance level. 

 

4 EMPIRICAL ANALYSIS 
 

4.1 Model Specification and Overall Measure of Fit 
The empirical analysis involved a series of model estimations. At first, four separate 

independent NB models are estimated for four different crash types to establish a benchmark 

for comparison. Second, a simulation based RPMNB (Random parameter multivariate NB 

model) is estimated to examine number of crashes across four different collision types jointly. 

Third, for the closed-form approach, the empirical analysis involves estimation of count models 

using four different copula structures (Frank, Clayton, Gumbel and Joe) that restricts the 

variable effect to be same across the entire TAZs. Fourth, all the copula models (all four) are 

re-estimated with random parameters across each count dependent variable.  Finally, a 

comparison exercise was undertaken to determine the most suitable model.  

The results from the various model systems – convergence log-likelihood, number of 

parameters and Bayesian Information Criterion (BIC) metric are presented in Table 4. The 

reader would note that for the copula models with and without random parameters four 

alternative model structures were estimated. From the table, several observations can be made. 

First, it is evident that all models perform better than the independent model which illustrates 

the importance of incorporating for the influence of unobserved factors in examining crash 

count by different crash types. Second, across copula models, Clayton copula model performs 

better in terms of data fit compared to other copula models in both classes (without random 

parameter and with random parameters). Third, within copula system, models considering 

random parameters outperform their counterparts that do not consider random parameters. 

Fourth, comparing the copula model system with the RPMNB model, we observe that in 

general copula based model systems (both classes with and without random parameters) 

provide improved data fit compared to the RPMNB model (except Joe copula without random 

parameters). Fifth, Random Parameter Clayton Copula (RPCC) provides the best model fit 

(lowest BIC value) in accommodating the dependency among crash counts for four crash types. 

The results illustrate the value of accommodating for unobserved heterogeneity through 

analytical formulations whenever possible.  

 

4.2 Model Estimation Results 
This section offers a detailed discussion of the effects of exogenous variables on the crash count 

component for different crash types. To conserve on space, we will restrict ourselves to the 

discussion of RPCC model results (however, the estimation results of the RPMNB model are 

presented in Table 6). Table 5 summarizes the estimation results for the RPCC where the 2nd, 

3rd, 4th and 5th column represents the count component for motorized intersection, motorized 

road segment, motorized off-road and non-motorized crashes, respectively. The copula 

parameters are presented in the last row panel of Table 5. A positive (negative) sign for a 

variable in the crash count component of Table 5 indicates that an increase in the variable is 

likely to result in more (less) crashes. For the sake of brevity, model results are discussed for 

all crash types simultaneously by different variable groups. 

 

4.2.1 Roadway Characteristics 

Proportion of arterial roads is associated with increased incidence of crash in all crash types 

except motorized off-road category. The result is expected because off-road crashes are likely 

to be related with high vehicular speed whereas in arterial roads, speeds are likely to be lower 

due to higher vehicular volume. The coefficient associated with number of intersections reveals 
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a positive impact on motorized intersection and non-motorized crashes while a negative effect 

is observed for motorized off-road crashes. This is intuitive as intersections are one of the most 

hazardous location for both motorists and non-motorists due to complex turning movements 

(see (Abdel-Aty et al., 2005; Cai et al., 2016) for similar results). Signal intensity offers a 

negative sign on off-road crashes indicating a lower likelihood of motorized off-road crash in 

a TAZ with increased number of signals. As expected, vehicles are likely to drive at a lower 

speed in the location with higher number of signals and as a result, the risk of motorized off-

road crashes might go down. Further, the estimated results show that a TAZ with higher 

variance in speed limit is likely to experience increased number of motorized intersection, road 

segment and off-road crashes. On the other hand, the likelihood of these three crash types are 

lower for zones with higher width of outside shoulder which is perhaps indicating greater safety 

margins for vehicular maneuvers. With respect to sidewalk width, the variable is found to be 

significant in non-motorized crash component with a negative impact indicating a lower risk 

for non-motorists with increased sidewalk width.  

 

4.2.2 Land-use Attributes 

With regards to land-use attributes, several factors are found to be significant determinants of 

crash counts for different crash type components. The model estimation results reveal that there 

are higher likelihoods of motorized intersection, motorized road segment and non-motorized 

crashes in a TAZ with higher urbanized and office areas. Institutional area is positively 

associated with motorized intersection and non-motorized crashes. As evident from Table 5, 

we can see that the variable indicating residential area is found to have a negative impact on 

motorized intersection crashes while a positive association is observed for non-motorized 

crashes.  

 

4.2.3 Built Environment Characteristics 

The variable corresponding to built environment characteristics reveals that higher number of 

restaurants and shopping centers are likely to result in increased number of intersection and 

road segment crashes for motorists. With respect to non-motorized crashes, number of 

restaurants is found to be a significant determinant with a positive impact (see (Eluru et al., 

2016; Yasmin et al., 2018a) for similar result). However, none of the built environment 

attributes are found to have significant impacts on motorized road segment crashes. 

 

4.2.4 Traffic Characteristics 

The parameters associated with traffic characteristics offer expected results. With higher VMT, 

a TAZ is likely to have higher crash incidence for all crash types. Further, we found a 

significant variability of VMT specific to motorized on-road crashes as indicated by the 

standard deviation parameter. The distributional parameter indicates that the overall impact of 

VMT on motorized on-road crashes is always positive (99.99%). The result highlights how the 

impact of VMT can vary across zones potentially due to changes in regional characteristics 

(such as driver behavior, and/or geometric design) across different parts of the study region. 

Additionally, proportion of heavy vehicles is found to be positively associated with motorized 

road segment crashes.  

 

4.2.5 Sociodemographic Characteristics 

With respect to sociodemographic characteristics, the estimates indicate that TAZs with high 

share of walk and bike commuters are likely to experience more motorized intersection crashes. 

On the other hand, the parameter for proportion of household with no vehicle reveals a positive 

association with non-motorized crashes. This is expected because people from households 

without access to vehicles are more exposed to the traffic as they are restricted to using public 
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transport, walk or bike as their primary mode for their trips. In terms of sociodemographic 

characteristics, no other variables are found to have significant impacts on motorized road 

segment and off-road crashes. 

 

4.2.6 Spatial Spillover Effect 

In terms of spatial spillover effects, office area of the surrounding zones is found to be 

positively associated with motorized intersection and road segment crashes of the targeted 

zones.  As expected, signal intensity in the neighbouring zones has a positive impact on 

motorized intersection crash. TAZs surrounded by zones with higher proportion of major road 

are likely to experience more motorized road segment crashes. Number of commuters by 

walking and bicycling and proportion of household with zero vehicle in the neighbouring zones 

have a positive influence on non-motorized crashes. Moreover, we accommodate the variation 

of the influence of this variable (indicated by the standard deviation in table 3) on non-

motorized crashes and found that the overall impact is not always to be positive (61.79% 

positive). This is an interesting finding that highlights the varying effect (both positive and 

negative) of the same variable across the zones. Several possible reasons can be attributed to 

such variability. For example, higher number of non-motorists means higher exposure, hence 

in some zones it results in possibly increased number of non-motorized crashes. At the same 

time, in some zones drivers might drive cautiously as they expect more non-motorists, resulting 

in a reduced likelihood of vehicle-non motorists’ collision. Average sidewalk width in the 

surrounding zones has a negative coefficient indicating a reduction in non-motorized crashes 

of the targeted zone. However, in terms of motorized off-road crashes, none of the spatial 

spillover variables are found to have a significant impact. 

 

4.2.7 Dependency Effect 

The copula parameter representing the dependency effects across different count components 

by crash types is presented in the last row panel of Table 5. As highlighted earlier, in the current 

analysis, Clayton copula (with random parameters) has provided the best model fit in 

accommodating the dependency among crash counts for four crash types. For the Clayton 

copula, the dependency is entirely positive, and the coefficient sign and magnitude reflect 

whether a variable increase or reduces the dependency across dimensions and by how much. 

The Clayton copula is best suited for strong left tail dependence and weak right tail dependence 

(see (Eluru et al., 2010) for detail); that is, it is suitable for the case when, after controlling for 

observed covariates, all four crash types tend to have a simultaneously high propensity for low 

crash counts, but not a simultaneously high propensity for high crash counts. Further, as 

indicated earlier, the dependency is expressed as a function of observed attributes. Several 

variables are explored and number of intersections is found to have a significant impact on the 

correlation profile supporting our hypothesis that the dependency profile varies across TAZs. 

The proposed framework by incorporating for such parameterizations allows us to improve the 

model estimation results. 

 

5 Predictive Performance Evaluation 
In order to demonstrate the comparison between RPMNB and random parameter Copula-based 

frameworks,  we evaluate the predictive performance by employing goodness of fit measures 

including MPB (Mean prediction bias), MAD (mean absolute deviation), MAPE (mean 

absolute percentage error), RMSE (Root mean square error) and predictive log-likelihood 

(please see (Bhowmik et al., 2018) for a discussion on estimating these measures). Two types 

of prediction exercise are undertaken: 1) In-sample prediction for the zones used in model 

estimation (3,800) and 2) holdout sample prediction for the zones that have been set aside for 

validation analysis (947). The reader would note that these fit measures quantify the error 
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associated with model predictions and the model with lower value of predictive measures and 

higher value of predictive log-likelihood will provide better prediction of the observed data. 

Table 7 summarizes the value of these measures for both RPMNB and RPCC models at a 

disaggregate level. As evident form Table 7, we can observe that RPCC outperforms the 

RPMNB model across most of the (38 out of 42) measures computed.  The result clearly 

highlights the improved performance of the proposed hybrid approach over the traditional 

RPMNB framework. 

In an effort to further assess the predictive performance of the estimated models, an in-

depth comparison for different count events across different crash types are carried out. 

Specifically, we predict the crash frequencies across different count alternatives for different 

crash types estimated from the two models RPMNB  and RPCC and compare their performance 

based on that. For this purpose, 20 data samples with 250 records (TAZs) each are randomly 

generated from the holdout validation sample consisting of 947 records (TAZs).  For these 

samples, we predict the number of TAZs for different count events (total 5 count categories are 

considered for each crash types based on the crash count distribution. For example: for 

intersection crashes, five classes are considered - TAZs with 0, 1-5, 6-20, 21-40 and 

>40crashes) across different crash types from both models (RPMNB and RPCC) and using 

these counts, we generate the ratio of predicted to observed counts specific to each level (count 

events and crash types). For instance, if there are 100 TAZs (out of 250) from data sample 1 

experiencing ”0” single non-motorized crash and we predict 70 and 80 TAZs from RPMNB 

and  RPCC model, then the estimated ratio of these models will be 0.7 (70/100) and 0.8 

(80/100) respectively. The reader would note that, the estimated ratio corresponds to the value 

of 1 would imply a perfect prediction. For the ease of presentation, we generate two box plots 

using all the data samples (total 20 points for every count alternative) specific to each model 

(RPMNB and RPCC) by each count events across the four crash types. Figure 2a represent the 

ratio statistics for different crash types while in figure 2b, we present the overall ratio statistics 

incorporating all the crashes together (total 80 points for each count alternatives). In terms of 

the crash types, it is very clear (from figure 2a) that the RPCC offers better prediction relative 

to the RPMNB especially for the motorized crashes in the current study context. However, for 

the non-motorized crashes, the RPMNB model performs marginally better. On the other hand, 

based on the overall crash perspective, the resulting predictive measures estimated for different 

count alternative further confirm the superiority of the copula approach over the RPMNB 

model in our study context.  

The comparison exercise between these two frameworks was further augmented by 

undertaking a correct classification analysis. Based on observed crash counts for each crash 

type, we divided all the zones (4,747) into 4 groups based on the quartile for number of crashes.  

Again, based on the predicted counts from both RPMNB and RPCC model, we create 4 groups 

of zones similarly and compute the percentage of correctly classified TAZs within each group. 

Figure 3 represents the classification accuracy for both RPMNB and RPCC model by each 

quartile across different crash type. From Figure 3, the reader would note that for motorized 

intersection crashes, the classification percentage for the RPCC model is 17.4% in the 1st 

quartile which denotes that out of 1,187 TAZs, around 772 are correctly classified for the 1st 

quartile. This means, within the first quartile, the RPCC framework is able to classify around 

70% (17.4*4) TAZs correctly for intersection crashes. Similarly, we can observe that for almost 

every crash type, the accuracy rate is higher for the RPCC model (except non-motorized 

crashes: RPMNB model has slightly better prediction rate in the higher quartiles) relative to 

RPMNB within each quartile which further reinforces the improved performance of the copula 

model in our empirical context. 
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6 Spatial Distribution 
To illustrate the applicability of the estimated copula model, we also identify the high-crash 

and low-crash zones by using prediction of the estimated RPCC model. Specifically, we 

generate the predicted number of crashes by crash type and identify the low-crash (bottom ten 

percentile zones with respect to number of crashes) and high-crash zones (top ten percentile 

zones with respect to number of crashes). The predicted results for Central Florida for the year 

2016 are presented in Figure 4. Figure 4a to 4d represents the high and low crash locations 

(zones) for all crash types considered while the high and low-crash zone locations for all 

crashes (identified based on common high/low-crash zones across all crash types) are presented 

in the appendix (Figure A1). From figure 4a to 4d, we can observe that Orange and Seminole 

county are under more risk for intersection, non-motorized and on-road crashes while the risk 

of getting involved in off-road crashes is higher in Polk, Osceola and Lake county. On the other 

hand, Volusia and Brevard county are found to be relatively safe across crash types. For high-

crash and low-crash zones considering all crashes (Figure A1), the results indicate that TAZs 

with greater risk are dispersed throughout the Central Florida region with visible clustering. 

This spatial illustration can easily be used to prioritize TAZs based on crash risk across 

different crash types to enhance road safety.  

 

7 CONCLUSIONS 
The most common approach employed to address the correlation across multiple frequency 

dependent variables in existing safety literature is the development of multivariate frameworks. 

These multivariate approaches can broadly be classified along two major streams: (1) 

simulation-based approaches and (2) analytically closed-form based approaches. The main 

difference between these two streams lies in how the dependency across dimensions is 

captured. In the simulation-based models, probability computation requires integrating the 

probability function over the error term distribution and the exact computation is dependent on 

the distributional assumption due to the inherently unobserved nature of the error term. Thus, 

the accuracy of the simulation-based approach is affected by number of dimensions as well as 

number of draws considered for the function evaluation. On the other hand, in the closed-form 

regime, the propensity equations for frequency dimensions are tied together by analytical 

multivariate distributional assumptions. Though the likelihood function is complicated in the 

closed-form approach, but once programmed, these frameworks are less prone to error. 

In our research, we compare the performance of the simulation-based framework with 

closed-form copula-based frameworks. In addition, we build on the closed-form copula based 

frameworks to incorporate unobserved heterogeneity associated with variable impacts on crash 

types (random parameters). The proposed model system is compared with the simulation based 

and analytical multivariate models. The comparison exercise is undertaken with the univariate 

models following negative binomial model structure. Within the copula framework, we 

estimate models for four copula structures: (1) Frank, (2) Gumbel, (3) Clayton and (4) Joe 

which cover a wide range of dependency structures, including radial symmetry and asymmetry, 

and asymptotic tail independence and dependence. The empirical analysis is based on the 

traffic analysis zone (TAZ) level crash count data for both motorized and non-motorized 

crashes from Central Florida for the year 2016. The models were estimated employing a 

comprehensive set exogenous variable including roadway, built environment, land-use, traffic, 

socio-demographic characteristics and spatial spillover effects. The model fit measures clearly 

highlight that the RPCC (random parameter Clayton copula) model performed better relative 

to the simulation-based RPMNB model. The comparison exercise was further augmented by 

generating a host of comparison metrics for both estimation sample and hold-out sample. In an 

effort to further assess the predictive performance of the estimated models, an in-depth 

comparison for different count events across different crash types and correct classification 
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analysis are carried out. The estimated results further reinforce the improved performance of 

the RPCC-based multivariate approach over the RPMNB model in our empirical context. The 

RPCC based copula model is also employed to generate high-crash and low-crash location 

(zone) categorization of TAZs in the Central Florida region to identify potential vulnerable 

zones by crash type.  

The proposed model results offer insights on important variables affecting crash 

frequency by crash types (road user and location for the current study context). Such macro 

level studies have mostly evolved in safety research with the target of incorporating safety 

considerations in the transportation planning process. Further, a regional or zonal level safety 

planning tool can be devised by using macrolevel study and hence are useful not only for the 

planners but also for the decision-makers. For example, transportation planners are required to 

forecast future crashes given changes in region’s characteristics (population increase, addition 

of new facility (such as road or major facility). The proposed crash prediction models can aid 

the process. Moreover, with the spatial illustration, high risk zones for every crash type can be 

easily identified and thus help the planners in enhancing safety for these high crash risk zones. 

The paper is not without limitations. The reader would note that the simulation based 

multivariate approach (RPMNB) considered in the study employs the most commonly 

employed distributional assumption by characterizing the relationship between the various 

parameters in the form of a multivariate normal distribution. Several research studies have 

examined alternative distributional assumptions (such as log-normal, and triangular) in 

simulation-based approaches. It would be interesting as a future research direction to explore 

how the comparison results might alter if the alternate distributions are incorporated within 

simulation-based approaches. Also, the analysis and the comparison exercise are conducted 

using zonal level data. In the future, we can explore if and how the comparison across the 

various frameworks will alter in a micro level analysis. Further, the study considers the effect 

of observed spatial attributes, it would be beneficial to capture the spatial unobserved 

heterogeneity as well. Another avenue for future research would be to explore the 

transferability of models developed for crash type simultaneously by estimating similar models 

for multiple spatial units across several years. 
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Figure 1: Dependency Structure of Different Archimedean Copulas* 

 
*The correlation across all the pairs (4 in our case) are same. Hence, for the ease of presentation, we present the 

scatter plot across the two pairs. In the figure, the contours are employed to partition the random draws into 

quartiles. The first contour envelops the first quartile. The intermediate space between the second contour and the 

first contour represents the second quartile and so on. The shape of the contours illustrates the dependency 

structure such as radial symmetry for Frank.   
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Figure 2a: Predicted to Observed Ratio for Different Crash Types 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton   

Copula model 

 

The x-axis in the figure represents the count group. For example, 1-5 represents the number of TAZs with 

1-5 crashes. The y-axis presents the ratio of number of TAZs predicted to be within this group to the number 

of TAZs observed to be within this group. To generate the box plot, the ratio computation is repeated 20 

times using samples of 250 records from the validation set. The black dot in the middle represents the mean 

predicted to observed ratio for the 20 different samples. In our ratio measure, model that offers proximity 

to 1 offers better performance while a perfect prediction would be represented by a value of 1. 
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Figure 2b: Predicted to Observed Ratio for Overall Crashes 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton 

Copula model 
See discussion above (figure 1a) for the figure
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Figure 3 Prediction Accuracy for Two Frameworks by Crash type Quartile 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton 

Copula model 
 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

RPMNB RPCC RPMNB RPCC RPMNB RPCC RPMNB RPCC

Intersection NMT Off-road On-road

16.5 17.5
21.6 22.4

14.3 15.6 16.1 17.4

6.8 7.3

18.2 18.4

9.1 9.9 8.5 9.1

9.3 9.6

14.7 14.7

6.2
7.5 8.6

9.3

15.3
16.2

10.3 10.8

9.9

12.9 13.9
16.0

P
er

ce
n

ta
g

e 
o

f 
T

a
zs

 P
re

d
ic

te
d

 C
o

rr
ec

tl
y

Crash Types

Prediction Accuracy For Each Percentile

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile



 

26 

 

  
a. Intersection Crash b. Non-motorized Crash 
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c. Off-road Crash d. On-road Crash 

 

Figure 4:  Spatial Distribution for Every Crash Types  
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TABLE 1 Summary of Existing Crash Frequency Studies 

Studies 
Study 

Unit 
Methodology 

Estimation 

Technique 
Dependent Variables Analyzed 

Number of 

Dimension 

Simulation-Based Approach 

Count Framework 

(Anastasopoulos et al., 

2012)1 
Micro Multivariate tobit regression MSL* 

Rates and counts of crashes by severity levels - no-

injury, possible injury and injury crashes 
3 

(Aguero-Valverde, 

2013) 
Macro Multivariate Spatial Model MSL 

by severity level - property damage only, possible 

injury, and injury/fatality 
3 

(Bhat et al., 2014) Micro Random parameters count models MACML 
by intersection control type – No control. Yield 

sign, stop sign, flashing light, regular signal light 
5 

(Chiou and Fu, 2013) Micro 

Multinomial-Generalized Poisson (MGP) 

Withatu1/without Error-Components 

(EMGP) and Nested Generalized Poisson 

Models (NGP) 

MSL 
by severity level - property damage only, possible 

injury, and injury/fatality by segment length 
3 

(Li et al., 2013) Macro 
Geographically Weighted Poisson 

Regression (GWPR) 
MSL Fatal crash only 1 

(Wang and Kockelman, 

2013) 
Macro 

Poisson-based multivariate conditional auto-

regressive (CAR) framework 
MCMC 

Pedestrian Crash Counts by walk miles travelled 

(WMT) 
1 

(Ye et al., 2013) Micro Joint Poisson regression model MSL 
by severity level - property damage only, possible 

injury, and injury/fatality 
3 

(Yu and Abdel-Aty, 

2013) 
Micro 

Bayesian bivariate Poisson-lognormal model 

and a Bayesian hierarchical Poisson model 
MCMC by multi-vehicle and single vehicle crash 2 

(Zou et al., 2014) Micro 
Finite-mixture/latent-class and Markov 

switching models 
MSL by segment length  11 

(Barua et al., 2014) Micro Multivariate Poisson lognormal model MCMC 
by crash severity – no injury and injury/fatal 

crashes 
2 

(Dong et al., 2014) Micro 
Multivariate random-parameters zero-

inflated negative binomial model 
MCMC 

by vehicles involved – car only crash, car-truck 

crash and truck only crash 
3 

 
1 Anastasopoulos et al. (2012) and Anastasopoulos (2016)) considered the random parameters within a multivariate Tobit framework with a Copula framework. However, it  

is important to recognize that the Copula considered in these studies is the traditional multivariate normal distribution based dependency without any additional flexibility 

for non-normal marginals and non-normal multivariate couplings. This also explains why the models were only applied to crash rates. For crash frequency models in the 

Anastasopoulos (2016) the marginals do not take the normal form and would require additional transformations (as considered in our study) for applying more flexible 

copula methods.  
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(Chiou et al., 2014) Micro 

Multinomial-Generalized Poisson With 

Error-Components (EMGP) - spatial error-

EMGP and spatial exogenous-EMGP 

MSL 
by severity level - property damage only, possible 

injury, and injury/fatality by segment length 
3 

(Chiou and Fu, 2015) Micro 

Multinomial generalized Poisson model with 

error components and spatiotemporal 

dependence (ST-EMGP) 

MSL 
by severity level - property damage only, possible 

injury, and injury/fatality 
3 

(Lee et al., 2015) Macro 
Multivariate Poisson Lognormal Conditional 

Autoregressive Model 
MSL by modes - motor vehicle, bicycle, and pedestrian 3 

(Zhan et al., 2015) Macro Multivariate Poisson-lognormal model MCMC 

by severity levels – fatal and severe injury crashes 

Crash frequency by crash severity – no injury, 

possible injury and evident injury 

2, 3 

(Aguero-Valverde et al. 

2016) 
Micro 

Multivariate Poisson log-normal spatial 

model 
MCMC 

by crash types – same direction, opposite direction, 

angle and hit-fixed object crashes 
4 

(Anastasopoulos, 2016) Micro 

Random parameter multivariate tobit model, 

Multivariate zero-inflated negative binomial 

model 

MSL 
Rates and counts by severity type – PDO, injury 

and fatality 
3 

(Barua et al., 2016) Micro 
Bayesian multivariate random parameters 

spatial model 
MCMC 

by severity levels – no injury and injury/fatal 

crashes 
2 

(Dong et al., 2016) Micro 
Random parameter bivariate zero-inflated 

negative binomial model 
MCMC 

by severity – disabling injury and non-disabling 

injury 
2 

(Mothafer et al., 2016) Micro 
Multivariate Poisson Gamma Mixture Count 

Model (MVPGM) 
MSL 

by crash types – rear end, sideswipe, fixed object 

and other crash types on freeway section 
4 

(Serhiyenko et al., 

2016) 
Micro Multivariate Poisson Lognormal model MCMC 

by crash type – single vehicle, same direction and 

opposite direction crashes 
3 

(Zeng et al., 2016) Macro Neural Networks Model MCMC 
by severity level on road segments - fatality or 

serious injury and slight injury 
2 

(Chen et al., 2017) Micro 
Multivariate Random Parameters Negative 

Binomial Approach 
MSL 

by severity level - property damage only, possible 

injury, and injury/fatality by pavement conditions – 

Excellent, Good, Good-Fair, Fair and Poor. 

3, 5 

(Cheng et al., 2017) Micro 
Multivariate Poisson lognormal temporal and 

spatial models 
MCMC 

by crash type - Rear-end, Head-on, Side-swipe, 

Broad-side, Hit object, and Other crashes 
6 

(Heydari et al., 2017) Micro 
Bayesian latent class flexible mixture 

multivariate model 
MCMC by crash type – pedestrian and bicycle crashes 2 

(Huang et al., 2017) Micro 
Multivariate Poisson log-normal regression 

model 
MCMC 

by transportation Modes (motor vehicle, bicycle 

and pedestrian crashes) at urban intersections. 
3 

(Wang et al., 2017) Micro 
Integrated Nested Laplace Approximation 

Multivariate Poisson Lognormal model 
MCMC 

by crash types –same-direction, intersection-

direction, opposite direction and single vehicle 

crashes and by severity outcomes – no injury, 

4, 3 
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possible/non-incapacitating injury and 

fatal/incapacitating injury crashes 

(Zeng et al., 2017) Micro Multivariate random parameter tobit model MCMC 
by severity levels – slight injury crash and 

killed/seriously injured crashes 
2 

(Cheng et al., 2018) Macro 

Multivariate Space-Time Models with 

Different Temporal Trends and 

Spatiotemporal Interactions 

MCMC 
by collisions modes - motor vehicle, pedestrian, 

bicycle, and motorcycle 
4 

(Bhowmik et al., 

2019b) 
Macro Panel Mixed Negative Binomial Model MSL 

by crash type - rear-end, head-on, angular, off-road, 

sideswipe, non-motorized 
6 

Fractional Split Framework (proportion of crashes) 

(Bhowmik et al., 2018) Macro 
Joint Negative Binomial-Multinomial Logit 

Fractional Split (NB-MNLFS) Model 
QMCSL 

by collision type - rear-end, head-on, angular, left-

turn, right-turn, off-road, rollover, sideswipe, other 

collision type 

10 

(Lee et al., 2018) Macro 
Mixed Fractional Split Multinomial Logit 

Modeling Approach 
QMCSL by vehicle type 8 

(Yasmin and Eluru, 

2018) 
Macro 

Joint Negative Binomial-Ordered Logit 

Fractional Split (NB-OLFS) Model 
QMCSL 

by crash severity - (1) proportion of no injury 

crashes, (2) proportion of minor injury crashes, (3) 

proportion of incapacitating injury crashes and (4) 

proportion of fatal crashes 

4 

(Wang et al., 2021) Micro 

Multivariate Poisson log-normal model, Joint 

Negative Binomial-Generalized Ordered 

Probit Fractional Split (NB-GOPFS) Model 

ML, 

QMCSL 

by crash severity - (1) fatal and incapacitating 

injury, (2) non-incapacitating and possible injury, 

(3) property damage only;  

by vehicle damage – (1) severe damage,  

(2) moderate damage, (3) minor damage 

3,3 

Closed-Form Approach (count) 

      

(Narayanamoorthy et 

al., 2013) 
Macro Spatial Multivariate Count Model CML 

by severity level – Possible injury, non-

incapacitating injury, incapacitating injury and fatal 

injury 

4 

(Nashad et al., 2016) Macro 
Copula based bivariate negative binomial 

model 
ML by crash type – pedestrian and bicycle crashes 2 

(Yasmin et al., 2018b) Macro 
Copula based multivariate negative binomial 

model 
ML 

By road user group – car, light truck, other 

motorized (truck, bus and other vehicles) and non-

motorized (pedestrian and bicyclist) 

4 

Note: *MSL= Maximum simulated likelihood approach, MCMC= Markov Chain Monte Carlo approach, MACML=maximum approximate composite marginal likelihood,                 

QMCSL= Qausi monte carlo simulated likelihood approach, ML= Maximum likelihood approach, CMT=Composite marginal likelihood approach. 
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TABLE 2 Descriptive Statistics of Dependent Variables 

Variable 

Names 
Definition 

Zones (N=4,747) 

Minimum Maximum Mean 
Standard 

Deviation 

Motorized 

Intersection 

Crash 

Total number of crashes occurred 

at or within the influence area of 

intersection in a TAZ 

0.000 171.000 9.480 13.490 

Motorized 

road 

segment 

Crash 

Total number of crashes occurred 

on roadway segments and outside 

the influence area of intersection 

in a TAZ 

0.000 283.000 11.826 20.700 

Motorized 

Off-road 

Crash 

Total number of crashes occurred 

outside the influence area of 

roadway in a TAZ 

0.000 51.000 2.367 3.573 

Non-

motorized 

Crash 

Total number of non-motorized 

(pedestrian and bicyclist) crash in 

a TAZ 

0.000 12.000 0.719 1.318 
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TABLE 3 Summary Statistics of Exogenous Variables (Zonal Level) 

Variables (4747) Definition 
Zonal (N=4,747) 

Minimum Maximum Mean Std. Deviation 

Roadway Characteristic 

Proportion of rural road (Rural road length/total road length)  0.000 1.000 0.121 0.309 

Proportion of urban road (Urban road length/total road length)  0.000 1.000 0.806 0.381 

Proportion of arterial roads (Arterial roads length/total road length)  0.000 1.000 00377 0.393 

Number of Intersection Ln (no of intersection) 0.000 4.682 1.921 1.053 

Signal intensity Total number of traffic signal per intersection 0.000 1.000 0.038 0.096 

Average speed limit Ln (mean speed limit in mph) 0.000 4.248 3.228 1.279 

Variance of speed limit Ln (variance of speed limit in mph) 0.000 6.686 2.325 2.041 

Average bike lane length Ln (average length of bike lane in feet) 0.000 1.662 0.044 0.147 

Average inside shoulder width Ln (average inside shoulder width in feet) 0.000 2.650 0.288 0.445 

Average outside shoulder 

width 
Ln (average outside shoulder width in feet) 0.000 2.977 0.964 0.579 

Average sidewalk width Ln (average sidewalk width in feet) 0.000 2.977 0.964 0.579 

Divided road length Ln of (divided road length in meter)  0.000 1.547 0.037 0.096 

Road ≥55mph Proportion of road length greater than 55mph 0.000 1.000 0.088 0.174 

Land-use Attributes 

Urban area Ln (urban area+1) in acre 0.000 9.440 4.921 1.970 

Recreational area Ln (recreational area+1) in acre 0.000 9.814 0.470 1.408 

Office area Ln (office area+1) in acre 0.000 6.440 0.877 1.383 

Residential area Ln (residential area+1) in acre 0.000 8.131 3.811 2.075 

Industrial area Ln (industrial area+1) in acre 0.000 7.067 1.118 1.306 

Institutional area Ln (institutional area+1) in acre 0.000 6.617 1.946 1.589 

Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the 

category of land-use, 𝑝 is the proportion of the 

developed land area for specific land-use, 𝑁  is the 

number of land-use categories   

0.000 0.946 0.369 0.221 
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Built Environment Characteristics 

No of business center Z score:  No of business center -0.138 19.664 0.000 1.000 

No of commercial center Z score:  No of commercial center -0.270 9.521 0.000 1.000 

No of educational center Z score:  No of educational center -0.487 11.610 0.000 1.000 

No of recreational center Z score:  No of park and recreational center -0.475 16.678 0.000 1.000 

No of restaurant Z score:  No of restaurant -0.464 11.021 0.000 1.000 

No of shopping center Z score:  No of shopping center -0.442 19.728 0.000 1.000 

Traffic Characteristics 

VMT Vehicle miles travelled 0.000 15.026 7.914 3.368 

Truck VMT Tuck vehicle miles traveled 0.000 13.049 3.474 2.864 

Proportion of heavy vehicles Total truck AADT/ Total AADT 0.000 0.369 0.068 0.046 

Sociodemographic Characteristics 

Population density Total population/Total area of TAZ in acre 0.000 21.293 2.364 2.233 

household density  Total number of household/Total area of TAZ in acre 0.000 8.556 0.902 0.878 

Average TAZ income Ln (Average TAZ income+1) 0.000 12.534 11.065 0.386 

Proportion of commuter  Total number of commuter/total population 0.000 0.778 0.408 0.085 

Non-motorist commuter Ln (NMT means to work for a TAZ) 0.000 5.261 1.278 1.098 

Proportion of household with 

no vehicle 
Number of household with no vehicle/total household 0.000 0.471 0.069 0.065 

Spatial Spillover Effect 

Office area Ln (∑office area+1) in acre in surrounding zones 0.000 7.670 2.849 1.869 

Signal intensity  ∑signal/∑intersection in neighbour’s zone 0.000 1.000 0.042 0.050 

Proportion of major road  
(∑Major road length/∑total road length) in 

surrounding zones 
0.000 1.000 0.619 0.249 

Proportion of HH with no 

vehicle  

∑household with 0 vehicle/∑household of 

neighbouring zones 
0.000 0.347 0.067 0.054 

Non-motorist commuter 
(∑commuter by walk and cycle/∑population) of 

neighbouring zones 
0.000 6.703 3.174 1.257 

Average sidewalk width  
Ln (average sidewalk width in feet) in surrounding 

zones 
0.000 2.127 1.089 0.334 
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TABLE 4 Summary of Statistical Data Fit from Different Model Systems 

Model (Sample Size = 3,800) 
Log-

Likelihood 

No. of 

Parameter 
AIC BIC 

Independent Model -33108.8 51 66319.6 66637.9 

RPMNB -32541.4 54 65190.7 65527.8 

Copula Without 

random effect 

Frank -32330.7 53 64767.3 65098.1 

Clayton -32285.6 53 64677.1 65007.9 

Gumbel -32477.9 52 65059.9 65384.6 

Joe -32609.3 52 65322.5 65647.2 

Copula With 

random effect 

Frank -32324.9 54 64757.9 65095.0 

Clayton -32269.3 55 64648.5 64991.9 

Gumbel -32437.4 53 64980.8 65311.7 

Joe -32345.8 54 64799.6 65136.8 
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TABLE 5 Random Parameter Clayton Copula (RPCC) Model Estimation Results 

Variables (N=3800) 

Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -0.403 -8.614 -0.986 -18.434 -0.795 -17.644 -2.823 -35.121 

Roadway Characteristics 

Proportion of arterial roads 0.134 5.268 0.118 4.306 -0.309 -7.366 0.224 5.608 

Number of intersections 0.302 13.873 -- -- -0.070 -6.363 0.249 10.132 

Signal Intensity -- -- -- -- -0.842 -5.635 -- -- 

Variance of speed limit 0.030 4.338 0.065 7.219 0.056 7.554 -- -- 

Average width of outside shoulder -0.256 -9.248 -0.330 -10.574 -0.122 -5.684 -- -- 

Average sidewalk width       -0.140 -4.854 

Land-use Attributes 

Urban rea  0.142 16.194 0.107 13.656 -- -- 0.140 11.697 

Office area  0.158 13.206 0.107 10.725 -- -- 0.101 8.925 

Institutional area  0.052 5.808 -- -- -- -- 0.066 5.325 

Residential area  -0.076 -12.069 -- -- -- -- 0.025 5.933 

Built Environment Characteristics 

Number of restaurants 0.230 13.599 0.255 12.551 -- -- 0.245 13.638 

Number of shopping centers -- -- 0.049 6.623 -- -- -- -- 

Traffic Characteristics 

VMT 0.057 8.281 0.161 23.760 0.198 29.882 0.031 5.887 

Standard Deviation   0.018 4.304     

Proportion of heavy vehicles -- -- -- -- 2.023 6.955 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.036 4.701 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 2.060 6.811 

Spatial Effects 
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Office area 0.100 8.771 0.176 14.987 -- -- -- -- 

Signal intensity  1.868 6.761 --  -- -- -- -- 

proportion of major road  -- -- 0.450 8.625 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 2.253 7.579 

Non-motorist commuter -- -- -- -- -- -- 0.034 10.025 

Standard Deviation       0.148 17.317 

Average sidewalk width  -- -- -- -- -- -- -0.133 -4.820 

Over-dispersion 0.755 34.710 0.841 31.889 0.724 25.168 0.059 5.671 

Copula Parameter Estimate T-stat 

Constant 0.824 31.432 

Number of intersections -0.015 -6.632 

Log-Likelihood (No. of parameters): -32,269.30 (55); AIC: 64,648.59; BIC: 64,991.94 
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TABLE 6 Random Parameter Multivariate NB (RPMNB) Model Estimation Results 

Variables (N=3800) 

Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -1.086 -12.170 -1.541 -14.687 -1.488 -25.072 -3.477 -20.121 

Roadway Characteristics 

Proportion of arterial roads 0.151 2.666 0.113 1.843 -0.307 -5.102 0.216 2.872 

Number of intersections 0.319 11.358 -- -- -- -- 0.335 7.628 

Signal Intensity -- -- -- -- -0.996 -3.951 -- -- 

Standard Deviation -- -- -- -- 0.848 2.034 -- -- 

Variance of speed limit 0.033 2.762 0.061 4.667 0.052 4.041 -- -- 

Average width of outside shoulder -0.262 -6.013 -0.395 -8.520 -0.159 -3.749 -- -- 

Average sidewalk width -- -- -- -- -- -- -0.198 -3.071 

Land-use Attributes 

Urban rea  0.151 12.720 0.105 9.080 -- -- 0.153 7.542 

Office area  0.173 10.445 0.088 5.108 -- -- 0.146 7.048 

Institutional area  0.075 5.248 -- -- -- -- 0.089 4.544 

Residential area  -0.072 -7.290 -- -- -- -- 0.027 1.680 

Built Environment Characteristics 

Number of restaurants 0.260 11.101 0.257 7.986 -- -- 0.268 11.636 

Standard Deviation -- -- 0.096 2.211 -- -- -- -- 

Number of shopping centers -- -- 0.063 2.933 -- -- -- -- 

Traffic Characteristics 

VMT 0.071 6.478 0.213 21.065 0.232 24.954 0.038 2.395 

Proportion of heavy vehicles -- -- -- -- 2.545 5.604 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.074 4.644 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 1.730 3.245 
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Spatial Effects 

Office area 0.120 7.459 0.164 9.678 -- -- -- -- 

Signal intensity  1.696 5.039 -- -- -- -- -- -- 

proportion of major road  -- -- 0.479 6.393 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 1.016 1.409 

Non-motorist commuter -- -- -- -- -- -- 0.142 6.184 

Average sidewalk width  -- -- -- -- -- -- -0.243 -2.660 

Over-dispersion 0.304 11.647 0.427 16.618 0.254 8.706 0.035 1.990 

Correlation 

Correlation 1 0.686 30.723 -- -- -- -- 0.686 30.723 

Correlation 2 -- -- 0.735 39.370 0.735 39.370 -- -- 

Log-Likelihood (No. of parameters): -32,541.38 (54); AIC: 65,190.75; BIC: 65,527.86 
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TABLE 7 Prediction Performance Evaluation for Two Frameworks 

Data Crash Type 
MPB MAD MAPE RMSE Predicted BIC 

RPMNB* RPCC RPMNB RPCC RPMNB RPCC RPMNB RPCC RPMNB RPCC 

In-Sample 

Data 

Motorized Intersection 1.648 0.756 8.558 6.272 1.380 1.185 21.817 12.867 

65,527.86 64,991.94 

Motorized On-road 2.445 1.104 12.049 9.022 1.334 1.558 55.214 24.249 

Motorized Off-road 0.032 -0.079 2.257 1.859 0.216 0.050 3.708 2.977 

Non-Motorized 0.046 -0.004 0.804 0.756 0.178 0.219 1.632 1.266 

Across observation 4.170 1.777 23.668 17.910 3.108 3.012 59.506 27.642 

Validation 

Data 

Motorized Intersection 2.026 0.587 10.042 6.977 2.655 1.250 35.937 16.989 

20,904.03 16,864.40 

Motorized On-road 1.155 0.839 12.219 9.077 1.882 1.299 36.179 24.494 

Motorized Off-road -0.073 -0.139 2.286 1.930 0.322 0.026 3.945 3.332 

Non-Motorized 0.071 0.033 0.852 0.818 0.056 0.230 1.987 1.560 

Across observation 3.179 1.320 25.400 18.801 4.915 2.805 51.185 30.035 

Note: *RPMNB=Random parameter multivariate negative binomial model, RPCC =Random Parameter Clayton copula model 
              *Model with underline gives better performance (lower measure) 
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APPENDIX A 
TABLE A1 Independent NB Model Results 

Variables (N=3800) 

Motorized 

Intersection Crashes 

Motorized 

On-Road Crashes 

Motorized 

Off-Road Crashes 
Non-motorized Crashes 

Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

Constant -0.699 -7.782 -1.468 -13.634 -1.116 -9.995 -3.237 -21.637 

Roadway Characteristics 

Proportion of arterial roads 0.153 3.069 0.106 1.904 -0.356 -6.286 0.209 2.925 

Number of intersections 0.288 9.613 -- -- -0.064 -2.116 0.270 5.934 

Signal Intensity -- -- -- -- -0.660 -2.601 -- -- 

Variance of speed limit 0.030 2.731 0.060 5.180 0.052 4.360 -- -- 

Average width of outside shoulder -0.231 -6.080 -0.352 -8.390 -0.144 -3.158 -- -- 

Average sidewalk width -- -- -- -- -- -- -0.146 -2.473 

Land-use Attributes 

Urban rea  0.147 14.254 0.123 11.101 -- -- 0.151 8.355 

Office area  0.164 10.688 0.118 6.886 -- -- 0.121 5.976 

Institutional area  0.068 4.666 -- -- -- -- 0.083 4.182 

Residential area  -0.074 -7.067 -- -- -- -- 0.037 2.143 

Built Environment Characteristics 

Number of restaurants 0.265 11.844 0.268 9.446 -- -- 0.249 10.799 

Number of shopping centers  -- -- 0.057 1.903 -- -- -- -- 

Traffic Characteristics 

VMT 0.064 5.677 0.179 17.401 0.237 14.564 0.039 2.446 

Proportion of heavy vehicles -- -- -- -- 1.772 3.679 -- -- 

Socio-demographic Characteristics 

Non-motorist commuter 0.075 4.730 -- -- -- -- -- -- 

Proportion of HH with no vehicles -- -- -- -- -- -- 1.860 3.287 

Spatial Effects 
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Office area 0.113 5.933 0.206 10.926 -- -- -- -- 

Signal intensity  2.017 4.291 -- -- -- -- -- -- 

proportion of major road  -- -- 0.594 6.968 -- -- -- -- 

Proportion of HH with no vehicle  -- -- -- -- -- -- 2.105 2.910 

Non-motorist commuter -- -- -- -- -- -- 0.164 7.268 

Average sidewalk width  -- -- -- -- -- -- -0.287 -3.221 

Over-dispersion 0.757 31.611 0.921 33.970 0.766 18.113 0.452 9.788 

Log-Likelihood (No. of parameters) -10909.91 (15) -11367.74 (12) -7103.68 (9) -3727.44 (15) 

Log-Likelihood (No. of parameters): -33,108.79 (51); AIC: 66,319.58; BIC: 66,637.96 
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Figure A1 Spatial Distribution for Overall Crashes (Considering all crash types together) 

 


