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ABSTRACT 

Traditionally, aggregate crash frequency by severity and disaggregate severity analysis have been 

conducted independently in the safety literature. The current research effort contributes to the 

safety literature by bridging the gap between these two different streams of research by using both 

aggregate and disaggregate level crash data simultaneously. To be specific, the study proposes a 

framework that integrates aggregate and disaggregate level models. The proposed framework 

allows for the influence of independent variables at the crash record level to be incorporated within 

the aggregate level propensity estimation. The empirical analysis is based on the crash data drawn 

from the city of Orlando, Florida for the year 2019. The disaggregate level analysis uses 20,204 

crash records that contain crash specific variables, temporal characteristics, roadway, vehicle and 

driver factors, road environmental and weather information for each record. For aggregate level 

model analysis, the study aggregated the crash records by severity class over 300 traffic analysis 

zones. An exhaustive set of independent variables including roadway and traffic factors, land-use 

attributes, built environment, and sociodemographic characteristics are considered in this analysis. 

The empirical analysis is further augmented by employing several goodness of fit and predictive 

measures. A validation exercise is also performed using a holdout sample to highlight the superior 

performance of the proposed integrated model relative to the non-integrated crash count by 

severity model. The proposed model can also accommodate common unobserved spatial 

correlation among crash records within the same zone. The model results illustrate the benefits of 

developing an integrated model system for crash frequency and severity. 

 

Keywords: Aggregate crash count by severity; Disaggregate severity analysis; Integrated model; 

Unobserved effects. 
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1. BACKGROUND 

Transportation safety modeling has evolved along two streams. The first stream of research – crash 

frequency models – examine the factors affecting the occurrence of crashes on transportation 

facilities. These studies are generally conducted employing aggregate data at the microscopic 

(segments or intersections) or macroscopic spatial scales (zones) to improve roadway design and 

operational efficiency. The second stream of studies – crash severity models – examine factors 

affecting crash consequences (usually severity) at the disaggregate level (such as driver, vehicle 

or crash record). Across the two streams, several methodological enhancements have occurred to 

improve crash frequency and severity models. In recent years, crash frequency models are typically 

multivariate in nature accommodating for crash frequency by collision type and/or severity (see 

for example Bhowmik et al., 2021a; Yasmin and Eluru, 2018; Afghari et al., 2020). Crash severity 

models that allow for the influence for observed and unobserved factors are the expected norm in 

the literature (see for example Kabli et al., 2020; Xiong and Mannering, 2013). Despite the 

tremendous progress across the two streams of research, transportation safety literature treats these 

two model systems as independent. However, each crash record in the crash frequency model has 

a corresponding record in the crash severity model system i.e., crashes employed in frequency 

models are aggregated from disaggregate records.  

Transportation safety studies consistently incorporate aggregate level factors such as traffic 

volume, roadway factors, neighborhood characteristics, land-use and built environment 

characteristics in modeling crash frequency, crash severity and/or crash type at the disaggregate 

level (see for example Ahmed et al., 2023; Pervaz et al., 2022). However, the current state of 

modeling does not accommodate for any disaggregate level independent variables in modeling 

crash frequency. To be sure, important characteristics of crashes such as crash type and crash 

severity have been considered to create crash frequency variables (by type and severity). Yet, the 

crash generation process is assumed to be independent across the aggregate and disaggregate 

resolutions. Consider the following situation. The presence of higher pedestrian volumes in a zone 

might result in an increase in the number of crashes in the zone. At the disaggregate level, the 

presence of a crash in higher pedestrian volume location might result in less severe crashes 

occurring at intersections (such as rear-end crashes). However, in current approaches there is no 

mechanism to incorporate the crash record specific information in the frequency model (even if it 

were partitioned by crash type or severity). Thus, current approaches to safety modeling do not 

allow for adequate interaction of variable impacts across crash frequency and crash severity 

models. Towards addressing this limitation, the objective of the current paper is to develop a 

unified model system that improves how the influence of observed and unobserved variables at 

the disaggregate resolution in the severity model affect crash frequency modeling process. This 

approach will allow us to evaluate the influence of independent variables that are traditionally 

examined separately within a unified framework.  

Towards this end, the current study develops an integrated model framework that jointly 

estimates crash frequency and severity models at their corresponding resolution. The framework 

involves incorporating the overall impact of independent variables for a crash (crash propensity) 

from the disaggregate model within the zone level crash frequency propensity estimation as an 

additional independent variable. The approach can take two forms. In the first structure, the 

disaggregate level model propensity can be summed up for all crashes at the zone level as a 

composite score and treated as an exogenous variable i.e., the severity model parameters are fixed 

and the parameter for the composite score variable is estimated in the frequency propensity 

equation. Alternatively, disaggregate level model propensity can be treated as endogenous and be 
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estimated simultaneously with the propensity of the crash frequency model. In this approach, the 

estimates of the disaggregate model will be allowed to vary while modeling crash frequency. The 

second approach is computationally more involved while allowing for feedback between aggregate 

and disaggregate level models. The reader would note that the proposed approach requires the 

development of crash data in a consistent and integrated manner at the two resolutions. 

Specifically, the approach should begin at the disaggregate level and then be aggregated to 

generate crash frequency at the aggregate level. The proposed integrated model system is estimated 

using data drawn from the City of Orlando for the year 2019 with exhaustive crash and zone-

specific variables. The model results illustrate the benefits of developing an integrated model 

system for crash frequency and severity.  

 

2. EARLIER RESEARCH AND CURRENT STUDY IN CONTEXT 

Crash frequency and severity domains have been extensively explored in safety literature. An 

exhaustive review of literature from these two domains is beyond the scope of the current paper. 

For recent reviews of methodology, relevant to frequency domain see (Lord and Mannering, 2010; 

Mannering et al., 2016; Yasmin and Eluru, 2018) and severity domain see (Mannering et al., 2016; 

Savolainen et al., 2011; Yasmin and Eluru, 2013)1. In the current study, we focus on methods that 

consider interlinking two decision processes. Two approaches are traditionally employed to 

achieve the interlinking of multiple dependent variables at different resolutions. The first and the 

more commonly employed approach to achieve the interlinking processes employs unobserved 

factor-based methods that recognize the repeated presence of the finer resolution data in the coarser 

resolution record. These models are typically labelled as hierarchical models (for example see 

Alarifi et al., 2018; Huang et al., 2016; Huang and Abdel-Aty, 2010). The second and the approach 

proposed in the current study directly interlinks the two decision processes via composite variables 

derived from observed variables2. The approach is relatively new in safety literature and has been 

adopted in a limited number of studies (Cai et al., 2019; Pervaz et al., 2022). These model systems 

recognize that crashes at the micro level facilities contribute to total macroscopic level crash 

counts. To allow for this influence, Pervaz et al. (2022) adds one component per micro level facility 

type (such as intersection or segment) in the form of an additional variable in the propensity of the 

macroscopic model system (Pervaz et al., 2022). The component for a facility type is evaluated as 

the sum of crash propensity for all facilities of that type in the spatial unit. The approach described 

develops an integrated approach across two aggregate resolutions – macro (zone) and micro 

(intersections and segments). The proposed approach draws on this idea to interlink aggregate 

crash frequency and disaggregate severity models.  

While such integrated models are relatively new in the safety field, there have been 

multiple examples of modeling approaches that employ composite variables from finer resolution 

outcomes in the travel behavior modeling field. The approaches employed include activity travel 

choice and vehicle ownership choice models. Activity travel choices (such as mode, destination, 

activity type, activity duration) are likely to be simultaneously considered and hence are assumed 

to give rise to a sequential deeply nested logit model (Ben-Akiva and Lerman, 1985). As it is not 

 
1 The reader would note that crash frequency domain studies can also include studies that examine crash rates using 

censored regression models such as tobit models (see Ahmed et al., 2022; Anastasopoulos et al., 2012a, 2012b; Zeng 

et al., 2017). 
2 The reader would note that approaches that accommodate for crash frequency by severity or type are an improvement 

over aggregate crash frequency models (see Bhowmik et al., 2021a; Yasmin and Eluru, 2018; Afghari et al., 2020). 

However, these models are still aggregate in resolution and do not account for crash record level factors.  
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computationally feasible to simultaneously estimate deeply nested logit models with multiple 

decision variables, log-sum from one level is carried up to the next higher level, resulting in a 

sequential estimation approach (see Eluru et al., 2010 for details). Similarly, vehicle ownership 

models for vehicle type (such as sedan, SUV) and usage (mileage) analysis consider composite 

variables (or log-sum variables) generated from finer resolution vehicle make (such as Honda, 

Toyota) and model (Civic, Camry) attributes within the vehicle type alternative propensity 

equations (Bhat et al., 2009). It is important to recognize that while these approaches are based on 

decisions across multiple dependent variables the decisions represent the behavior of a single 

decision unit.  

Drawing inspiration from the aforementioned studies, the current research proposes an 

integrated model framework that allows for the influence of disaggregate level variables as a 

composite variable within the aggregate level propensity estimation. The approach would involve 

summing up the crash propensity of each disaggregate level severity record within the aggregate 

resolution and adding the generated value as a new variable in the aggregate model. The propensity 

will incorporate disaggregate level variables including crash characteristics (such as crash types, 

first harmful events), driver characteristics (such as driving under influence related, distraction 

related), and environmental characteristics (such as clear, rainy). In our study, the aggregate model 

is employed to examine crash frequency by severity and the disaggregate model is employed to 

examine crash severity. A negative binomial-ordered probit fractional split (NB-OPFS) framework 

is employed to examine crash frequency by severity. Specifically, the negative binomial 

component models the total number of crashes and the ordered probit fractional split component 

determines the proportion of each severity at a zone. The crash severity variable is examined using 

the ordered probit model. The integrated approach can take two potential forms with these models. 

In the first structure, the ordered probit model propensity across the crashes in the zone is computed 

as a composite score and treated as an exogenous variable i.e., the severity model parameters are 

fixed. In this approach, an additional parameter for the composite variable is estimated in each of 

the NB-OPFS model components i.e., the composite score is included in the count and proportion 

model components. Alternatively, composite score can be treated as endogenous and be estimated 

simultaneously within the NB-OPFS model. In this approach, the estimates of the disaggregate 

model will be allowed to vary while modeling crash frequency. The second approach is 

computationally more involved as it allows for feedback between aggregate and disaggregate level 

models. The model fit measures such as Bayesian Information Criterion (BIC) can be employed 

to guide the model selection process.  

The proposed model system is estimated using data drawn from the City of Orlando for the 

year 2019. The study considers a total of 300 traffic analysis zones for the aggregate level crash 

count by severity model. The disaggregate level model contains total 20,204 crash records from 

these zones. These records contain crash specific variables, temporal characteristics, roadway, 

vehicle and driver factors, road environmental, and weather information of each crash record. For 

aggregate level model analysis, an exhaustive set of independent variables including roadway and 

traffic factors, land-use attributes, built environment, and sociodemographic characteristics are 

considered.  

 

3. METHODOLOGY 

In this study, we employed negative binomial-ordered probit fractional split (NB-OPFS) model 

and an integrated modeling framework to analyze crash frequency by severity. However, for the 

sake of space, we will restrict ourselves to presenting the integrated framework only. Further, 
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within the integrated framework, there are two components: the disaggregate level model (ordered 

probit) and the aggregate level model (NB-OPFS). For the ease of presentation, we will discuss 

the methodology by each component.  

 

3.1 Disaggregate Level Model Structure (Ordered Probit Model) 

In the traditional ordered response model, the discrete injury severity levels (𝑣𝑗) are assumed to 

be associated with an underlying continuous latent variable (𝑣𝑗
∗). This latent variable is typically 

specified as the following linear function:   

𝑣𝑗
∗ = 𝑋𝑗Θ + 𝜀𝑗, for 𝑗 = 1,2, … … …, n (1) 

where, 𝑗 (𝑗 = 1,2, … … … , 𝑛) represents the crash record. 𝑋𝑗 is a vector of exogenous variables 

(excluding a constant). Θ is a vector of unknown parameters to be estimated. 𝜀𝑗 is the random 

disturbance term assumed to be standard normal distribution. Let us assume  𝑘 (𝑘 = 1,2,3, … , 𝑘) 

be the index to represent injury severity categories. In this study, 𝑘 take the values of ‘no-injury’ 

(𝑘 = 1), ‘possible injury’ (𝑘 = 2), ‘non-incapacitating injury’ (𝑘 = 3) and ‘fatal and 

incapacitating injury’ (𝑘 = 4). 𝑡𝑘 represents the thresholds associated with these severity levels. 

These unknown 𝑡𝑘s are assumed to partition the propensity into 𝑘 − 1 intervals. The unobservable 

latent variable 𝑣𝑗
∗ is related to the observable ordinal variable 𝑣𝑗  by the 𝑡𝑘 with a response 

mechanism of the following form: 

𝑣𝑗 = 𝑘, 𝑖𝑓 𝑡𝑘−1 <  𝑣𝑗
∗ < 𝑡𝑘, for 𝑘 = 1,2, … … … , 𝑘 (2) 

In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that 𝑡0 < 𝑡1 <  … … … < 𝑡𝑘 where 𝑡0 = −∞ 

and 𝑡𝑘 = +∞. Given these relationships across the different parameters, the resulting probability 

expressions for record 𝑗 and alternative 𝑘 for the ordered probit take the following form: 

𝜋𝑗𝑘 = 𝑃𝑟(𝑣𝑗 = 𝑘|𝑋𝑗) = Υ(𝑡𝑘 − 𝑋𝑗Θ) − Υ(𝑡𝑘−1 − 𝑋𝑗Θ) (3) 

where, Υ(. ) represents the standard normal distribution function. 

 

Considering the spatial arrangement of the crash records within the same zone, i.e., the adjacency 

heterogeneity (dependency), the equation for disaggregate level propensity can be updated as, 

𝑣𝑗
∗′ = 𝑋𝑗Θ + 𝜽𝑖𝑗 + 𝜀𝑗, for i = 1,2, … … …, N (4) 

where, 𝑖 (𝑖 = 1,2, … , 𝑁) is the index for traffic analysis zone. 𝑣𝑗
∗′ is the latent propensity capturing 

spatial dependency and 𝜽𝑖𝑗 is a vector of unobserved effects specific to the zone for crash records 

highlighting the spatial arrangement within the same zone. This 𝜽𝑖𝑗 will be same across the crash 

records if they correspond to same zone and thus, the adjacency heterogeneity (dependency) will 

be captured through the proposed system. The reader would note that the spatial unobserved 

heterogeneity can vary across the crash records. Therefore, in the current study, we parameterized 

the correlation parameter  𝜽𝑖 as a function of observed attributes as follows: 

 𝜽𝑖𝑗 = 𝜸𝑖𝑗𝒔𝑖𝑗 (5) 
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where, 𝒔𝑖𝑗 is a vector of exogenous variables at the zonal level 𝑖 (including a constant) employed 

for crash record j, 𝜸𝑖𝑗 is a vector of parameters to be estimated. The model estimation process 

employs log-likelihood (LL) generated using the formula in equation 3 with the updated propensity 

from equation 4. 

 

3.2 Aggregate Level Model Structure (NB-OPFS Model) 

 

3.2.1 Count framework 

In our study, the count framework estimates total number of crashes using the negative binomial 

model.  

Once the disaggregate level propensities are estimated, we adopt two alternative 

approaches to estimate the aggregate (zonal) level propensities as presented in equation 6 and 7 

respectively.  

𝜇𝑖 = 𝐸(𝑐𝑖|𝒛𝑖) = 𝑒𝑥𝑝 ((𝜹 + 𝜻𝑖)𝒛𝑖 + 𝜌𝑐 ∗ ln (∑ (𝑒𝑥𝑝(𝑣𝑗
∗′))

𝑗𝑖

𝑝=1

) + 𝜀𝑖 + 𝜂𝑖) (6) 

𝜇𝑖 = 𝐸(𝑐𝑖|𝒛𝑖) = 𝑒𝑥𝑝 ((𝜹 + 𝜻𝑖)𝒛𝑖 + 𝜌𝑐

∗ ln (∑ (𝑒𝑥𝑝(𝑋𝑗Θ + 𝜽𝑖𝑗 + 𝜀𝑗))

𝑗𝑖

𝑝=1

) + 𝜀𝑖 + 𝜂𝑖) 

(7) 

where, 𝒛𝑖 is a vector of explanatory variables associated with zone 𝑖. 𝜹 is a vector of coefficients 

to be estimated. 𝜻𝑖 is a vector of unobserved factors on crash count propensity for zone 𝑖 and its 

associated zonal characteristics assumed to be a realization from standard normal distribution: 

𝜻𝑖~𝑁(0, 𝝅2). 𝜌𝑐 is a scalar associated with the disaggregate level highlighting the share of 

disaggregate level propensity to be linked with the aggregate level propensity for count 

component. p is a counter here ranging from 1 to 𝑗𝑖 represents the crash record 𝑗 in zone 𝑖. For 

example, if 5 crashes occurred in the zone i, then we will sum the propensity for these 5 crashes to 

obtain a value for 𝑗𝑖. The main difference between the two approaches is that the disaggregate level 

propensity will remain fixed and only the scalar parameter will be estimated for approach 1. In the 

second approach, we allow the disaggregate level parameters to be jointly influenced by 

disaggregate and aggregate fit. 𝜀𝑖 is a gamma distributed error term with mean 1 and variance 𝛼. 

𝜂𝑖 captures the influence of common unobserved factors that impact total number of crashes and 

proportion of crashes by severity for zone 𝑖.  
For the count model, the equation system for modeling total crash count in the usual 

negative binomial formulation can be written as: 
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𝑃(𝑐𝑖) =  
Γ (𝑐𝑖 +

1
𝛼)

Γ(𝑐𝑖 + 1)Γ (
1
𝛼)

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼

(1 −
1

1 + 𝛼𝜇𝑖
)

𝑐𝑖

 (8) 

where, 𝑐𝑖 be the index for crashes occurring over a period of time in zone 𝑖. 𝑃(𝑐𝑖) is the probability 

that zone 𝑖 has 𝑐𝑖 number of crashes. Γ(∙) is the gamma function, 𝛼 is negative binomial 

overdispersion parameter and 𝜇𝑖 is the expected number of crashes occurring in zone 𝑖 over a given 

time period (as presented in the equation 6 and equation 7).  

 

3.2.2 Fractional split framework 

The modeling of crash proportions by severity levels is undertaken using the ordered probit 

fractional split model. In the ordered outcome framework, the actual injury severity proportions 
(𝑦𝑖𝑘) are assumed to be associated with an underlying continuous latent variable (𝑦𝑖

∗). Following 

the same approach as presented in the negative binomial component, we adopt two alternative 

approaches to estimate latent propensity equation as follows: 

𝑦𝑖
∗ = ((𝜷 + 𝝆𝒊)𝒙𝑖 + 𝜌𝑓 ∗ ln (∑ (𝑒𝑥𝑝(𝑣𝑗

∗′))
𝑗𝑖

𝑝=1
) + 𝜉𝑖 ± 𝜂𝑖), 𝑦𝑖𝑘 =

𝑘 𝑖𝑓 𝜏𝑘−1 < 𝑦𝑖
∗ < 𝜏𝑘 

(9) 

𝑦𝑖
∗ = ((𝜷 + 𝝆𝒊)𝒙𝑖 + 𝜌𝑓 ∗ ln (∑ (𝑒𝑥𝑝(𝑋𝑗Θ + 𝜽𝑖𝑗 + 𝜀𝑗))

𝑗𝑖

𝑝=1
) + 𝜉𝑖 ± 𝜂𝑖), 𝑦𝑖𝑘 =

𝑘 𝑖𝑓 𝜏𝑘−1 < 𝑦𝑖
∗ < 𝜏𝑘 

(10) 

The latent propensity 𝑦𝑖
∗ is mapped to the actual severity proportion categories 𝑦𝑖𝑘 by 𝜏 thresholds 

(𝜏0 = −∞ 𝑎𝑛𝑑 𝜏𝐾 = +∞) as presented in equation 9 and equation 10. 𝒙𝑖 is a vector of attributes 

(not including a constant) that influences the propensity associated with severity proportion 

categories. 𝜷 is the corresponding vector of mean effects. 𝝆𝒊 is a vector of unobserved factors on 

severity proportion propensity for zone 𝑖 and its associated zonal characteristics assumed to be a 

realization from standard normal distribution: 𝝆~𝑁(0, 𝝈2). 𝜌f is a scalar associated with the 

disaggregate level highlighting the share of disaggregate level propensity to be linked with the 

aggregate level propensity for fractional split component.  𝜉𝑖 is an idiosyncratic error term assumed 

to be identically and independently standard normally distributed across zone 𝑖. 𝜂𝑖 term generates 

the correlation between equations for total number of crashes and crash proportions by severity 

levels and also allows for considering the influence of various unobserved factors affecting the 

frequency and proportion variables. The ± sign in front of 𝜂𝑖 indicates that the correlation in 

unobserved individual factors between total crashes and crash proportions by severity levels may 

be positive or negative. A positive sign implies that zones with higher number of crashes are 

intrinsically more likely to incur higher proportions for severe crashes. On the other hand, negative 

sign implies that zones with higher number of crashes intrinsically incur lower proportions for 

severe crashes. To determine the appropriate sign one can empirically test the models with both 
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′ + ′ and ′ − ′ signs independently. The model structure that offers the superior data fit is 

considered as the final model. 

It is important to note here that the unobserved heterogeneity between total number of 

crashes and crash proportions by severity levels can vary across zones. Therefore, in the current 

study, the correlation parameter 𝜂𝑖 is parameterized as a function of observed attributes as follows: 

𝜂𝑖 = 𝑮𝑖𝑸𝑖 (11) 

where, 𝑸𝑖 is a vector of exogenous variables, 𝑮𝑖 is a vector of unknown parameters to be estimated 

(including a constant). 

To estimate the model presented in equation 9 and equation 10, we assume that:    

𝐸(𝑦𝑖𝑘|𝒙𝑖) = 𝐻𝑖𝑘(𝛽, 𝜏), 0 ≤ 𝐻𝑖𝑘 ≤ 1, ∑ 𝐻𝑖𝑘 = 1𝐾
𝑘=1  (12) 

𝐻𝑖𝑘 in our model takes the ordered probit probability (Λ) form for the severity category 𝑘.  

Given these relationships across different parameters, the resulting probability (Λ) for the 

ordered probit fractional split model takes the following form:  

Λ(𝑦𝑖𝑘 = 𝑘) = φ{𝜏𝑘 − (𝑦𝑖
∗)} − φ{𝜏𝑘−1 − (𝑦𝑖

∗)} (13) 

where, φ(∙) is the standard normal cumulative distribution function.  

 

3.3 Model Estimation 

In examining the model structure of total crash count and proportions of crashes by severity levels, 

it is necessary to specify the structure for the unobserved vectors 𝜻, 𝝆, 𝑮 and 𝜸 represented by Ω. 

In this study, it is assumed that these elements are drawn from independent realization from normal 

population: Ω~𝑁(0, (𝝅𝟐, 𝝈𝟐, ց2, 𝝑2)). Thus, conditional on Ω, the likelihood function for the 

integrated probability can be expressed as: 

 

𝐿𝑖 = ∫ 𝑃(𝑐𝑖) × ∏(Λ(𝑦𝑖𝑘 = 𝑘))
𝜛𝑖𝑑𝑖𝑘

𝐾

𝑘=1Ω

× ∏ ∏ 𝜋𝑗𝑘

𝐾

𝑘=1

𝑗𝑖

𝑝=1

𝑑Ω 
(14) 

 

where, 𝜛𝑖 is a dummy with 𝜛𝑖 = 1 if zone 𝑖 has at least one crash over the study period and 0 

otherwise. 𝑑𝑖𝑘 is the proportion of crashes in severity category k. Finally, the log-likelihood 

function is:     

   

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (15) 

 

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 15. The parameters to be estimated in the model are: 𝜹, 𝛼, 𝜷, 𝜏, 𝜌𝑐, 𝜌𝑓, 𝝅, 

𝝈, ց, 𝝑, t and Θ. To estimate the proposed model, we apply Quasi-Monte Carlo simulation 
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techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function across 

individuals (please see Bhat, 2001; Yasmin and Eluru, 2013 for details). We use the GAUSS matrix 

programming software to run the models (Aptech, 2015).  

  

4. DATA PREPARATION  

The current research employs 2019 data from Orlando, Florida composed of 300 traffic analysis 

zones with a total of 20,204 crash records. At the crash level, crash specific variables (such as 

crash types, first harmful events), temporal characteristics (such as time of the day, seasons), 

roadway factors (such as location of the crashes, speed limit, shoulder type), vehicle factors (such 

as presence of passengers), driver factors (such as driving under influence related, distraction 

related), road environmental factors and weather information (such as clear, rain, fog) are 

considered. These crashes could be classified into 5 categories by crash severity outcomes: fatal, 

incapacitating injury, non-incapacitating injury, possible injury, and no-injury crashes. The 

distribution of crashes by severity is 0.30% fatal, 1.75% incapacitating, 8.84% non-incapacitating, 

18.62% possible injury, and 70.49% no-injury crashes. Since the reported number of fatal crashes 

is very low, this study combines fatal and incapacitating injury crashes as fatal + incapacitating 

crashes for disaggregate level model estimation. For aggregate level model, four severity levels 

are considered and the dependent variable for fractional split component (represented as OPFS 

model) can be represented as proportions (number of specific severity level/total number of all 

crashes) as follows: (1) proportion of no-injury crashes (2) proportion of possible injury crashes 

(3) proportion of non-incapacitating injury crashes and (4) proportion of fatal and incapacitating 

injury crashes. A comprehensive set of independent variables including roadway, traffic, land-use, 

built environment, and sociodemographic characteristics are considered in this study. This study 

selects 280 traffic analysis zones randomly for model estimation resulting in a crash record sample 

of 18,286 crash records. The remaining 20 zones and 1,918 crash records are set aside for the 

validation of the models.  

 

4.1 Variables Considered 

The variables for disaggregate and aggregate analysis were collected from different data sources 

including Signal Four Analytics (S4A), Florida Department of Transportation (FDOT) 

Transportation Statistics Division, US Census Bureau and American Community Survey, and 

Florida Geographic Data Library databases. These explanatory variables were aggregated at the 

zonal level using the ArcGIS for aggregate level dataset. For example, annual average daily traffic 

(AADT) of a zone is obtained by computing a weighted average of AADT values across the road 

facilities in the zone. Aggregate level analyses use roadway and traffic factors (such as proportion 

of roads by functional class, number of lanes, average speed limit, average shoulder width, average 

sidewalk width and median width, intersection density, traffic signal density, AADT, and truck 

AADT), land-use attributes (such as proportion of residential, commercial, institutional, industrial, 

recreational and mixed areas), built environment characteristics (such as number of restaurants, 

business centers, commercial centers, educational centers, and shopping centers), and 

sociodemographic characteristics (such as population density, proportion of males and females, 

household density, median household income, proportion of car, drive alone, non-motorized means 

of transport, different population group by age level, household with vehicle availability, and 

population with different races). Land-use mix is defined as: [−
∑(𝑝𝑙(𝑙𝑛 𝑝𝑙))

𝑙𝑛 𝑅
], where l is the category 

of land-use, 𝑝𝑙 is the proportion of the developed land area devoted to a specific land-use l, R is 
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the number of land-use categories in an analysis zone. In our study, five land-use types were 

considered including residential, industrial, institutional, commercial (including office areas) and 

recreational areas. The value of this index ranges from zero to one - zero (no mix) corresponds to 

a homogenous area characterized by single land-use type and one to a perfectly heterogeneous 

mix.  

In estimating the model, several functional forms, and combination of variables are 

considered and those that provide the best fit are retained in the final specification. The final 

specification of the model was based on removing the statistically insignificant variables in a 

systematic process based on 90% confidence level. Figure 1 shows the sample share of the 

variables at disaggregate level considered for the final model estimation while the aggregate level 

variables are presented in Table 1 with the appropriate definition and summary statistics. 

 

5. EMPIRICAL ANALYSIS  

 

5.1 Model Specification and Overall Measure of Fit 

Several models are estimated for the empirical analysis of the proposed framework. First, we 

estimated the ordered probit model for disaggregate level severity analysis and negative binomial-

ordered probit fractional split (NB-OPFS) model for aggregate level crash count by severity. 

Second, we developed our proposed integrated model system following two approaches: a) 

integrated aggregate and disaggregate model 1 (IADM1): focusing on optimizing the joint log-

likelihood of the aggregate and disaggregate level models by only estimating the parameter for 

propensity aggregated from the disaggregate model (one parameter per model component i.e., 

count and proportion) as shown in equations 6 and 9, and b) integrated aggregate and disaggregate 

model 2 (IADM2): the disaggregate level parameters are estimated based on their contribution to 

the disaggregate level and the aggregate level models through the disaggregate level propensity 

component embedded within the aggregate level propensity equation (as shown in equations 7 and 

10). Third, we identify the best model by comparing model performance based on Bayesian 

Information Criterion (BIC). The BIC for a given empirical model is equal to: 

BIC= -2LL+𝑁𝑝ln (𝑂) (16) 

where, LL is the log-likelihood value at convergence, 𝑁𝑝 is the number of parameters and O is the 

number of observations. The model with the lower BIC is the preferred model.  

The corresponding BIC (LL) values are: (1) non-integrated model (ordered probit and NB-

OPFS) (with 45 parameters): 32,836.046 (-16,291.240), (2) IADM1 (with 41 parameters): 

32,684.538 (-16,226.756), (3) IADM2 (with 44 parameters): 32,700.379 (-16,226.224) and (4) 

IADM1 with unobserved heterogeneity (with 44 parameters): 32,646.507 (-16,199.288). Based on 

these BIC values, two specific observations could be drawn. First, all the integrated systems 

provide improved data fit as evidenced by the lower BIC values in comparison to the non-

integrated model. Second, within the integrated systems, our proposed IADM1 provides the lowest 

BIC indicating the best data fit in comparison to the proposed IADM2. Finally, we accommodate 

additional unobserved heterogeneity (𝜽𝑖𝑗) in our IADM1 (the best model in terms of data fit) and 

find that the model accommodating this additional unobserved heterogeneity provides further 

improved BIC (lower) compared to the IADM1 framework without 𝜽𝑖𝑗 elements. 
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Figure 1: Sample Share of the Variables at Disaggregate Level (n = 20,204) 
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Table 1: Summary Statistics of the Variables at Aggregate Level (N = 300) 

Variables Definition Min Max Mean SD 

Dependent variables 

Total crashes Total number of crashes in zone 0.000 292.000 67.347 56.300 

Proportion of fatal and 

incapacitating injury crashes  

Total fatal and incapacitating injury 

crashes/total crashes 
0.000 0.333 0.022 0.030 

Proportion of non-

incapacitating injury crashes 

Total non-incapacitating injury 

crashes/total crashes 
0.000 0.333 0.090 0.053 

Proportion of possible injury 

crashes 

Total possible injury crashes/total 

crashes 
0.000 1.000 0.187 0.095 

Proportion of no-injury 

crashes 
Total no-injury crashes/total crashes 0.000 1.000 0.698 0.116 

Roadway characteristics 

Road density 
Total road length in mile/total area of 

zone in sq. mile 
0.000 27.895 4.447 4.341 

Average sidewalk width Ln (Average sidewalk width, feet + 1) 0.000 2.646 1.775 0.506 

Average inside shoulder 

width 
Average inside shoulder width, feet 0.000 18.000 3.008 3.742 

Proportion of <40 mph roads  
Total road length with speed limit <40 

mph/total road length in zone 
0.000 1.000 0.496 0.397 

Intersection density 
Number of intersections/total area of 

zone in acre 
0.000 0.770 0.085 0.115 

Traffic signal density 
Number of traffic signals/total number 

of intersections in zone 
0.000 1.000 0.058 0.106 

Proportion of >=3 lane roads 
Total length of >=3 lane roads/total 

road length in zone 
0.000 1.000 0.231 0.274 

Proportion of divided roads 
Total divided road length/total road 

length in zone 
0.000 1.262 0.610 0.357 

Traffic characteristics 

AADT Ln (AADT of zone + 1) 0.000 13.507 11.189 1.864 

Proportion of heavy vehicles Total truck AADT/total AADT 0.000 0.170 0.056 0.024 

Land-use characteristics 

Proportion of residential 

areas 
Residential areas/total land-use areas 0.000 0.998 0.490 0.350 

Proportion of commercial 

areas 
Commercial areas/total land-use areas 0.000 1.000 0.242 0.274 

Land-use mix 
Mixed land-use areas/total land-use 

areas 
0.000 0.957 0.418 0.242 

Built environment characteristics 

Number of restaurants *Z score: Number of restaurants -0.597 6.690 0.000 1.000 

Number of educational 

centers 

Z score: Number of educational 

centers 
-0.649 3.879 0.000 1.000 

Sociodemographic factors 

Household density 
Number of households/total area of 

zone in acre 
0.084 8.621 2.016 1.574 

Non-motorized means of 

transport 

Ln (Non-motorized means of 

transport + 1) 
0.000 5.366 2.152 1.166 

Proportion of African 

American population 

Total African American population 

/total population in zone 
0.000 0.978 0.222 0.246 

*For the built environment characteristics, the results provided a superior fit for the standardized form (represented 

by Z-scores) of the actual variables than count, and number per area or density forms.  
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5.2 Model Estimation Results 

This section provides a brief description of the factors affecting crash count by severity at 

aggregate level as well as factors influencing crash severities at the disaggregate level model. For 

the sake of brevity, the results of the proposed integrated aggregate and disaggregate model 1 

(IADM1) with unobserved heterogeneity are discussed in this section. Table 2 presents the model 

estimation results for the proposed model. The reader would note that a positive (negative) sign 

for a variable in Table 2 indicates that an increase in the variable is likely to result in more (less) 

crashes as well as exhibit a higher (lower) impact on severity. The results of the non-integrated 

ordered probit and negative binomial-ordered probit fractional split models are presented in Table 

A1 in the Appendix. 

 

Table 2: Estimation Results of the Proposed IADM1 Considering Unobserved 

Heterogeneity (N = 280 Traffic Analysis Zones with 18,286 Crash Records) 

Parameters Estimates t-stat 

Disaggregate level 

Threshold between NI-PI 0.809 31.702 

Threshold between PI-NII 1.576 58.048 

Threshold between NII-FII 2.479 72.259 

Crash type (Base: Rear-end and other crash types)   

Angle 0.303 7.735 

Head on 0.478 5.385 

Left turn 0.305 9.346 

Right turn -0.243 -2.775 

Sideswipe -0.553 -16.725 

Non-motorized 1.705 31.014 

Single motorized vehicle 0.253 5.557 

Time (Base: Peak morning, off-peak morning, off-peak evening and late 

evening) 
  

Late night (00:00 to 6:30) 0.103 2.713 

Peak evening (16:00 to 18:30) -0.053 -2.208 

Season (Base: Summer and Autumn)   

Spring (March to May) -0.049 -2.097 

Winter (December to February) -0.040 -1.715 

Speed limit (Base: Speed limit < 40 mph)   

Speed limit 40-54 mph 0.091 4.485 

Speed limit >=55 mph 0.116 3.398 

Location (Base: Not at intersection)   

Intersection 0.095 3.972 

Shoulder type (Base: Other shoulder types)   

Curb shoulder type -0.036 -1.815 

Presence of passengers (Base: Driver only)   

With passenger 0.338 17.199 

Driving under influence (Base: Not DUI related)   

DUI related 0.470 6.179 

Distraction (Base: Not distraction related)   

Distraction related 0.234 10.019 

Lighting condition (Base: Daylight and dawn/dusk)   

Dark lighted 0.066 2.564 

Dark not lighted 0.169 2.542 

Aggregate level 

Count component   



15 

 

Parameters Estimates t-stat 

Constant -0.326 -6.444 

Average sidewalk width -0.032 -1.999 

Intersection density 0.204 3.150 

Traffic signal density 0.119 2.267 

Proportion of commercial areas 0.079 2.975 

Household density 0.009 1.734 

Overdispersion parameter 0.697 5.229 

Proportion component   

Threshold between NI-PI 0.605 2.984 

Threshold between PI-NII 1.303 6.622 

Threshold between NII-FII 2.111 10.518 

Average inside shoulder width -0.018 -4.098 

Proportion of <40 mph roads -0.199 -4.266 

Traffic signal density -0.222 -1.901 

Proportion of heavy vehicles 2.030 1.931 

Proportion of commercial areas -0.116 -1.655 

Number of restaurants -0.052 -2.461 

Parameter for disaggregate level model propensity   

Propensity in the count component 0.993 81.483 

Propensity in the proportion component 0.037 0.827 

Unobserved heterogeneity   

Constant 0.109 6.749 

Road density 0.010 3.570 

Land-use mix 0.030 1.693 

BIC 32,646.507 

Log-likelihood -16,199.288 

Number of parameters 44 

Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal 

and incapacitating injury crashes.  
 

5.3 Crash Specific Constant 

The model constant in the count component does not have any substantive interpretation. 

  

5.4 Disaggregate Level Attributes  

The results of the proposed model show that among the disaggregate level crash specific variables, 

angle, head on, left turn, non-motorized and single motorized vehicle crash types have positive 

impact on crash severity while right turn and sideswipe crash types have negative impact compared 

to the rear-end and other crash types. These results are consistent with many previous studies 

(Abdel-Aty and Keller, 2005; Danesh et al., 2022; Marcoux et al., 2018; Wang and Kim, 2019; 

Yasmin and Eluru, 2013; Zeng et al., 2019). The findings are quite intuitive as in the case of angle 

crashes and head on crashes, the dissipation of kinetic energy and deformation of motor vehicle 

bodies are greater resulting in severe consequences. Left turn crashes generally occur while drivers 

tend to make left maneuvers. The severity of these crashes is also higher due to the greater force 

of impact exerted while colliding with oncoming vehicles and a similar result was found in other 

studies (Abdel-Aty and Keller, 2005). Further, non-motorized involved crashes, such as pedestrian 

and bicycle crashes, are severe in nature as these users are more vulnerable on roadways. In 

addition, single motorized vehicle crashes, such as roll over and run-off-road crashes are likely to 

result in severe crashes compared to the rear-end and other crash types (Yasmin and Eluru, 2013). 

On the contrary, right turn crashes and sideswipe crashes are likely to be less severe as a lower 
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amount of kinetic energy is dissipated within the vehicles due to the direction of impact force 

during these crashes (see Abdel-Aty and Keller, 2005 for similar findings).  

Among the temporal factors, late nighttime has a positive impact on crash severity while 

evening peak has a negative impact (compared to other times of the day). This is plausible as the 

volume of traffic is low in the late night and vehicle operating speeds are higher (Marcoux et al., 

2018). During peak hours, the higher traffic volume and lower speeds reduces the probability of 

severe crashes. In addition, spring and winter season have a lower impact on crash severity 

compared to summer and autumn. The findings are similar to those reported in other studies (Zeng 

et al., 2019).  

The model results clearly showed that crashes occurred at road sections with speed limit 

40-54 mph and >= 55 mph have a higher probability of severe crashes compared to the road section 

with speed limit less than 40 mph. This is quite intuitive as the operating speeds are also higher at 

the road sections with higher speed limit (K. Wang et al., 2019; Wang and Kim, 2019; Yasmin et 

al., 2014; Yasmin and Eluru, 2013). The findings, as expected, indicate that crashes at intersections 

are more severe than segment locations. Further, the curb shoulder type has a negative impact on 

crash severity as this shoulder type provides additional safety by reducing vehicle speed (Jiang et 

al., 2013).  

The results demonstrate that the presence of passengers in the vehicle, driving under 

influence and distracted conditions have a positive impact on crash severity. These results are 

expected and have been documented in previous work (Das et al., 2009; Marcoux et al., 2018; 

Paleti et al., 2010; X. Wang et al., 2019; Weiss et al., 2014; Yasmin and Eluru, 2013). 

The model results also show that compared to the daylight and dawn/dusk conditions, dark 

conditions irrespective of light have a positive impact on severity. This is because dark conditions 

often reduce visibility and increase reaction time on the roads (see Marcoux et al., 2018; Wang 

and Kim, 2019 for similar findings). 

 

5.5 Aggregate Level Attributes  

In the aggregate level count component, wider sidewalk has a negative impact on likelihood of 

crashes while intersection density and traffic signal density have positive impacts. This is plausible 

as the presence of wider sidewalks provides additional margin for error and thus contribute to a 

lower risk (Bhowmik et al., 2019). Higher number of intersections in a zone have higher traffic 

conflicts increasing crash risk. Along the same line, higher number of signalized intersections lead 

to increase in crashes (Wang and Huang, 2016). 

Among the land-use and sociodemographic attributes, proportion of commercial areas and 

household density show positive impacts on crash count. These findings are intuitive as 

commercial areas have commerce related activities such as loading/unloading, movement of heavy 

vehicles and increased traffic conflicts that might contribute to higher crash risk (Cui and Xie, 

2021; Mohammadnazar et al., 2021; Soroori et al., 2019; Xie et al., 2019). In the case of household 

density, as the density increases, traffic is likely to increase and contribute to additional crash risk 

(Yasmin and Eluru, 2018). 

In the proportion component, wider inside shoulder width, proportion of roads with <40 

mph speed limit and traffic signal density indicate a negative impact on crash severity. This is 

intuitive as wider shoulder provides additional safety margin on the road, thus, contributing to 

reduced severity (see Chen et al., 2017). As described earlier, it is evident that roads with lower 

speed limit have lower probability of severe crashes (Afghari et al., 2020; Yasmin and Eluru, 

2018). Further, higher traffic signal density is associated with lower severity (Bhowmik et al., 
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2021b). The results indicate that a higher proportion of heavy vehicles increases the severity of 

crashes as found in many studies (Yasmin and Eluru, 2018).  

Among land-use attributes, higher proportion of commercial areas reduces the severity of 

crashes. The presence of more restaurants in a zone reduces the severity of the crashes. Similar 

findings are reported in previous studies (Yasmin and Eluru, 2018).  

The coefficients for the fixed propensity from the disaggregate model in the count 

component and severity component are presented in the lower row panel of Table 2. The results 

indicate that an increased disaggregate level model propensity is associated with increased total 

crash count at the aggregate level. On the other hand, the results indicate that disaggregate level 

propensity is not significantly impacting the proportion of crashes by severity at 90% confidence 

level. The coefficient for severity component while insignificant was retained to show the direction 

of effect. The positive sign for both parameters indicates that a higher value of disaggregate level 

model propensity is likely to increase the number of total crashes and the crash severity i.e., higher 

propensity for severe crashes at the disaggregate level is directly associated with an increased 

number of total and severe crashes at the aggregate level. 

 

5.6 Unobserved Heterogeneity 

The proposed model system can capture unobserved heterogeneity in the form of spatial variations 

for crash records in a zone through a common spatial correlation between all crash records from a 

zone. The unobserved heterogeneity variable constant presented in Table 2 corresponds to this 

common zone spatial correlation. The significant effect of this parameterized correlation parameter 

(𝜽𝑖𝑗) clearly highlights the presence of common unobserved factors across crash records in the 

same zone. Capturing this common spatial correlation across the crash records is an important 

contribution of this study. The correlation was also parameterized and tested for several 

independent variables. In our testing, we found two zonal variables – road density and land-use 

mix - exhibit significant unobserved correlation across crash records within the same zone. Further, 

we attempted to capture the unobserved correlation (𝜂𝑖) between total crashes and crash 

proportions by severity levels, and random parameter effects (𝜻 and 𝝆) in our proposed model 

system. However, among these parameters tested no statistically significant effect was recovered 

in our dataset.  

 

5.7 Predictive Performance of the Model  

To demonstrate the applicability of the model, we undertake a comparison exercise between the 

proposed integrated aggregate and disaggregate model 1 (IADM1) and the negative binomial-

ordered probit fractional split (NB-OPFS) model by testing model performance on estimation and 

holdout samples. We compare the models by employing three different measures of fit: mean 

prediction bias (MPB), mean absolute deviation (MAD), and mean squared prediction error 

(MSPE). MPB represents the magnitude and direction of average bias in model prediction. The 

model with the lower MPB provides better prediction of the observed data and is computed as: 

MPB =   𝑚𝑒𝑎𝑛 (�̂�𝑖 − 𝑦𝑖) (17) 

where, �̂�𝑖 and 𝑦𝑖 are the predicted and observed number of crashes occurring over a period of time 

in a zone 𝑖. On the other hand, MAD describes average misprediction of the estimated models. 

The model with lower MAD value closer to zero provides better average predictions of observed 

data. MAD is defined as: 
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MAD =   𝑚𝑒𝑎𝑛 |�̂�𝑖 − 𝑦𝑖|  (18) 

MSPE quantifies the error associated with model predictions and is defined as: 

MSPE =  𝑚𝑒𝑎𝑛 (�̂�𝑖 − 𝑦𝑖)
2  (19) 

The smaller the MSPE, the better the model predicts observed data.  

 

Table 3 presents the values of these measures for the proposed integrated model and NB-

OPFS model. The results clearly highlight that the proposed integrated model performs better than 

NB-OPFS model across all fit measures computed for both estimation and validation datasets.  

 

Table 3: Predictive Performance of the Models 

Dataset Models Measures NI PI NII FII Total 

Estimation 

(N=280 

traffic 

analysis 

zones with 

18,286 

records) 

IADM1 with unobserved 

heterogeneity MPB 
-0.429 0.028 0.152 0.079 -0.169 

NB-OPFS -0.459 -0.168 0.002 0.031 -0.594 

IADM1 with unobserved 

heterogeneity MAD 
6.400 2.837 1.923 0.972 5.718 

NB-OPFS 20.957 6.010 3.205 1.191 29.654 

IADM1 with unobserved 

heterogeneity MSPE 
88.783 15.950 7.056 1.942 75.567 

NB-OPFS 859.650 69.867 18.628 2.935 1,631.054 

Validation 

(N=20 

traffic 

analysis 

zones with 

1,918 

records) 

IADM1 with unobserved 

heterogeneity MPB 
-1.972 0.509 -1.058 0.042 -2.479 

NB-OPFS -21.109 -3.606 -2.784 -0.301 -27.800 

IADM1 with unobserved 

heterogeneity MAD 
11.211 3.007 3.148 1.156 11.275 

NB-OPFS 42.281 9.388 6.440 1.421 57.772 

IADM1 with unobserved 

heterogeneity MSPE 
424.191 16.800 16.387 3.019 391.580 

NB-OPFS 3,961.385 184.153 63.468 4.195 6,915.558 

Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal 

and incapacitating injury crashes.  
 

The values of the measures shown in Table 3 demonstrate the model performance at the aggregate 

level. To further evaluate the predictive performance of the estimated models, we carried out a 

comparison exercise between the proposed IADM1 with unobserved heterogeneity and the NB-

OPFS model by comparing absolute deviation from observed values across the zones in our study 

region (see Figure 2). The heat maps show that our proposed model exhibits lower predictive 

deviation values compared to the NB-OPFS model across the study region. The mean and the 

distribution of the deviation values further highlight the superiority of the proposed model in both 

estimation and validation samples.  
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Figure 2: Distribution of the Model Deviations across Traffic Analysis Zones (TAZs): 

Proposed IADM1 Model (Left) and Non-integrated (NB-OPFS) Model (Right) 

 

5.8 Elasticity Effects 

The model estimates presented in Table 2 represent a complex joint interaction of aggregate and 

disaggregate level models and do not directly provide the magnitude of the effects of the variables 

on crash counts. The variable impact magnitudes can be obtained by computing elasticity effects 

of those variables. As the primary focus of our analysis is on illustrating how disaggregate level 

variables contribute to aggregate level model, we focus on the elasticity effects of disaggregate 

level variables by following the procedure demonstrated in Eluru and Bhat (2007) (Eluru and Bhat, 

2007). By this procedure, the percentage changes in the expected total zonal crash counts by 

severity caused by the change in the disaggregate level exogenous variable were computed. As all 

the exogenous variables in the disaggregate level are indicator variables, we obtain these changes 

by changing the value of the variable to one for the subsample of observations for which the 

variable takes a value of zero and to zero for the subsample of observations for which the variable 

takes a value of one. Specifically, the elasticity effects computed in this procedure are aggregated 

percentage elasticity based on the aggregated change and the overall shares of the sample.  

The computed elasticities are presented in Table 4. The results show the percentage change 

in the number of crashes by different severities due to the changes in the disaggregate level 

exogenous variable of interest. For example, the elasticity estimate for the driving under influence 

related variable indicates that driving under influence increases a total crash by 58.74%. The 

effects of all the variables presented in Table 4 can be interpreted in similar fashion. By analyzing 

these effects, several observations can be drawn. First, there are differences in the elasticity effects 

across the expected number of crashes for different severities. Second, the most significant 

variables with respect to an increase in the expected number of total crashes are non-motorist 

involved crash types, head on crash type, driving under influence related, driving with passenger, 

angle, left turn and single motorized vehicle crash types, distraction related, and dark conditions. 

Third, the most significant variables with respect to an increase in the expected number of fatal 

and incapacitating injury crashes are non-motorist involved crash types, head on crash type, 

driving under influence related, driving with passenger, angle, left turn and single motorized 

vehicle crash types, distraction related, dark conditions and road section with speed limit >= 
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55mph. Finally, the elasticity effects demonstrate that the influence of crash specific and driver 

related variables is substantially larger than the influence of temporal and roadway characteristics.  

 

Table 4: Aggregate Elasticity Effect for Disaggregate Level Variables  

Parameters %Total %NI %PI %NII %FII 

Crash type (Base: Rear-end and other crash types)      

Angle 34.35 33.62 35.55 36.58 37.85 

Head on 60.32 58.92 62.63 64.62 67.08 

Left turn 34.08 33.38 35.26 36.25 37.48 

Right turn -21.48 -21.13 -22.07 -22.55 -23.15 

Sideswipe -44.83 -44.17 -45.92 -46.83 -47.92 

Non-motorized 412.00 396.80 436.58 459.00 487.74 

Single motorized vehicle 28.19 27.61 29.16 30.00 31.00 

Time (Base: Peak morning, off-peak morning, off-peak evening 

and late evening) 
     

Late night (00:00 to 6:30) 10.69 10.48 11.03 11.32 11.67 

Peak evening (16:00 to 18:30) -5.19 -5.10 -5.35 -5.48 -5.64 

Season (Base: Summer and Autumn)      

Spring (March to May) -4.82 -4.73 -5.00 -5.09 -5.24 

Winter (December to February) -3.91 -3.84 -4.03 -4.13 -4.26 

Speed limit (Base: Speed limit < 40 mph)      

Speed limit 40-54 mph 9.04 8.88 9.31 9.54 9.81 

Speed limit >=55 mph 12.10 11.87 12.50 12.82 13.23 

Intersection (Base: Not at intersection) 9.58 9.40 9.88 10.13 10.44 

Curb shoulder (Base: Other shoulder types) -3.53 -3.47 -3.64 -3.73 -3.84 

With passenger (Base: Driver only) 35.16 34.47 36.31 37.28 38.47 

Driving under influence (DUI) related (Base: Not DUI related) 58.74 57.39 61.00 62.88 65.26 

Distraction related (Base: Not distraction related) 24.93 24.45 25.74 26.41 27.24 

Lighting condition (Base: Daylight and dawn/dusk)      

Dark lighted 6.70 6.58 6.92 7.09 7.31 

Dark not lighted 18.13 17.77 18.74 19.24 19.86 

Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal 

and incapacitating injury crashes.  
 

These elasticity effect results can contribute to improving road safety. For instance, results indicate 

that crash types such as angle, head on, left turn, non-motorized and single motorized vehicle 

should be considered during countermeasure development. Effective traffic signals, medians, 

facilities for non-motorists and roadside guidepost/guard rail could be some suitable solutions for 

mitigating these crash types. In addition, results indicate that driving at higher operating speeds, 

especially on road sections with posted speed limit >= 55mph, driving with passengers, under 

influence, distracted condition and dark conditions should be considered as serious concerns. 

Strategies such as continuous monitoring and targeted enforcement, road safety awareness 

campaigns, traffic education, roadway lighting improvement and maintenance should be 

accelerated in the zones with over-speeding, driving under influence incidence, and distraction. 

Overall, the elasticity analysis demonstrates how the proposed model can be applied to determine 

critical disaggregate level factors contributing to the increase of the total crashes and crash 

severity.  
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6. CONCLUSIONS 

The independent modeling approaches for crash frequency and severity models do not allow for 

interaction of variable impacts across the two systems. However, crashes employed in the 

frequency models are aggregated from the disaggregate level crash records. To bridge the gap 

between these two model systems, the current research proposes an integrated model framework 

that allows for the influence of disaggregate level variables within the aggregate level propensity 

estimation. The approach would involve summing up the crash propensity of each disaggregate 

level severity record within the aggregate resolution and adding the generated value as a new 

variable in the aggregate model. In this study, we employed a negative binomial-ordered probit 

fractional split (NB-OPFS) framework at the aggregate model to examine crash frequency by 

severity and the ordered probit model at the disaggregate model to examine the crash severity. In 

the NB-OPFS framework, the negative binomial component models the total number of crashes 

and the ordered probit fractional split component determines the proportion of each severity at a 

zone. These models were utilized by following two approaches of the proposed integrated 

framework. In the first approach, the ordered probit model propensity across the crashes in the 

zone is computed as a composite score and treated as an exogenous variable. In this approach, an 

additional parameter per component (each for count and proportion component) for the composite 

variable is estimated. In the second approach, the composite score of the ordered probit model 

propensity is treated as endogenous, allowed to vary, and estimated simultaneously within the NB-

OPFS model. The empirical analysis was conducted using crash data drawn from the City of 

Orlando for the year 2019. The study considered a total of 20,204 crash records from 300 traffic 

analysis zones. 

A series of models was estimated for the empirical analysis of the proposed framework, 

including ordered probit model for disaggregate level severity analysis, NB-OPFS model for 

aggregate level crash frequency by severity, integrated aggregate and disaggregate model 1 

(IADM1) and integrated aggregate and disaggregate model 2 (IADM2). The model selection 

exercise was conducted based on the Bayesian Information Criterion (BIC) value. The results 

clearly highlighted the improved performance of the proposed integrated models over non-

integrated model system. Within the integrated model approaches, IADM1 outperforms the 

IADM2 in terms of BIC value. Finally, we accommodated unobserved heterogeneity in the 

IADM1 and found that accommodating unobserved heterogeneity provides further improved BIC 

(lower) value. We also compared the performance of the proposed integrated model with the non-

integrated model system by using several predictive performance measures. The measures also 

clearly highlighted the superiority of our proposed integrated model over the non-integrated model 

system. Further, an elasticity exercise was conducted to illustrate how the influence of disaggregate 

level variables on crash frequency dimensions can be examined.  

The study is not without limitations. The proposed integrated approach requires substantial 

effort for data compilation in the region. The compilation can also be cumbersome as data from 

various sources are needed leading to the handling of large datasets and substantial data processing 

resources. Additionally, future research efforts can explore the efficacy of the proposed model 

examining crash frequency by crash type and severity simultaneously. 
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APPENDIX 

 

Table A1: Estimation Results of the Non-integrated (Ordered Probit and NB-OPFS) 

Models (N = 280 Traffic Analysis Zones with 18,286 Crash Records)  

Parameters Estimates t-stat 

Disaggregate level ordered probit model 

Threshold between NI-PI 0.809 31.702 

Threshold between PI-NII 1.576 58.048 

Threshold between NII-FII 2.479 72.259 

Crash type (Base: Rear-end and other crash types)   

Angle 0.303 7.735 

Head on 0.478 5.385 

Left turn 0.305 9.346 

Right turn -0.243 -2.775 

Sideswipe -0.553 -16.725 

Non-motorized 1.705 31.014 

Single motorized vehicle 0.253 5.557 

Time (Base: Peak morning, off-peak morning, off-peak evening and late 

evening) 
  

Late night (00:00 to 6:30) 0.103 2.713 

Peak evening (16:00 to 18:30) -0.053 -2.208 

Season (Base: Summer and Autumn)   

Spring (March to May) -0.049 -2.097 

Winter (December to February) -0.040 -1.715 

Speed limit (Base: Speed limit < 40 mph)   

Speed limit 40-54 mph 0.091 4.485 

Speed limit >=55 mph 0.116 3.398 

Location (Base: Not at intersection)   

Intersection 0.095 3.972 

Shoulder type (Base: Other shoulder types)   

Curb shoulder type -0.036 -1.815 

Presence of passengers (Base: Driver only)   

With passenger 0.338 17.199 

Driving under influence (Base: Not DUI related)   

DUI related 0.470 6.179 

Distraction (Base: Not distraction related)   

Distraction related 0.234 10.019 

Lighting condition (Base: Daylight and dawn/dusk)   

Dark lighted 0.066 2.564 

Dark not lighted 0.169 2.542 

Log-likelihood: -14,637.577; BIC: 29,500.874; Number of parameters: 23   

Aggregate level NB-OPFS model 

Count component   

Constant 1.660 4.170 

Average inside shoulder width 0.027 2.253 

Intersection density 0.548 1.742 

Proportion of >=3 lane roads 0.249 1.731 

Proportion of divided roads 0.398 2.919 

AADT 0.104 2.769 

Proportion of residential areas 0.240 1.907 

Proportion of commercial areas 0.684 3.755 

Number of educational centers 0.124 3.854 
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Parameters Estimates t-stat 

Non-motorized means of transport 0.171 5.507 

Proportion of African American population 0.642 4.057 

Overdispersion parameter 0.997 7.380 

Proportion component   

Threshold between NI-PI 0.460 6.671 

Threshold between PI-NII 1.158 18.760 

Threshold between NII-FII 1.965 30.275 

Average inside shoulder width -0.016 -3.579 

Proportion of <40 mph roads -0.201 -4.275 

Traffic signal density -0.210 -1.727 

Proportion of heavy vehicles 1.658 1.684 

Proportion of commercial areas -0.131 -1.907 

Number of restaurants -0.036 -2.243 

Proportion of African American population 0.137 2.258 

Log-likelihood: -1,653.646; BIC: 3,431.258; Number of parameters: 22   

Non-integrated model (combined) - BIC 32,836.046  

Non-integrated model (combined) - Log-likelihood -16,291.240 

Non-integrated model (combined) - Number of parameters 45 

Note: NI = no-injury crashes, PI = possible injury crashes, NII = non-incapacitating injury crashes, and FII = fatal 

and incapacitating injury crashes.  
 

 

 

 

 


