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ABSTRACT 
Vehicle operating speed plays a significant role in many fields of transportation engineering 

including safety, operation, design and management. The current research effort contributes to 

literature on examining vehicle speed on arterial roads methodologically and empirically. 

Specifically, we propose and estimate a panel mixed generalized ordered probit fractional split 

(PMGOPFS) model to examine critical factors contributing to vehicle operating speed on 

roadways. The proposed modeling framework allows for the exogenous variable impacts to 

vary across the alternatives. Further, the model is formulated to allow for the impact of common 

unobserved factors across multiple levels (roadway, segment, direction, day and time period). 

To the best of the authors’ knowledge, this is the first time such an econometric model is 

proposed and estimated in any literature (not just in transportation). The proposed model is 

estimated employing a maximum simulated quasi-likelihood based objective function. 

Vehicular speed data obtained from 8 arterial roads in Orlando for the year 2016 is used for 

estimating the model. The data is obtained for weekday morning and evening peak and off-

peak hours for one randomly chosen week for each roadway throughout the year. The 

exogenous variables that are considered in the current empirical study include geometry, 

roadway, traffic, land use and environmental attributes. The model estimation results are 

further augmented by conducting elasticity analysis to highlight the important factors affecting 

the vehicular speed profile.  

 

Keywords: Vehicle speed; Arterial road; Panel mixed generalized ordered probit fractional split 

model; Quasi-loglikelihood; Unobserved factors; Parameter heterogeneity  
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1 INTRODUCTION 

Vehicle operating speed plays a significant role in many fields of transportation engineering. 

In transportation safety literature, vehicle speed is one of the most common factors identified 

as a contributing factor for crash occurrence and its consequences. Crashes involving high 

operating speeds often result in severe injury or fatality (Eluru and Bhat, 2007). As evident, in 

2015, of the 32,166 fatal crashes in the US, 27% are attributed to high speed (National Center 

for Statistics and Analysis, Speeding: 2015 data). Vehicle speed is also considered as a critical 

factor in other domains of transportation research. For example, vehicle speed is employed as 

a performance measure in the evaluation process of geometric design consistencies. In traffic 

flow modeling, vehicle operating speed is an essential parameter to build or validate simulation 

frameworks. Recently, with the emergence of global climate change associated challenges, 

accurately estimating transport emissions relies on models that provide vehicle speed estimates.   

Thus, it is not surprising that a number of studies explored the relationship between 

vehicular speed on roadway facilities (including roads, curves and tangents) and various 

exogenous factors including geometric attributes, traffic characteristics and driver 

characteristics. A majority of these studies developed vehicle speed prediction models based 

on the 85th percentile speed as opposed to employing the full speed distribution (Krammes et 

al., 1995; Gattis and Watts, 1999; Fambro et al., 2000; McFadden et al., 2001). The analysis 

neglecting the available full speed distribution of vehicles is likely to result in biased parameter 

estimations. Studies have attempted to address this by considering the full vehicle operating 

speed distribution (Tarris et al., 1996; Figueroa Medina and Tarko, 2005;). The methodological 

approaches considered in these studies involve disaggregate level linear regression and ordered 

fractional split approaches. The ordered fractional split model proposed by Eluru et al., 2013 

evaluated the proportion of vehicles traveling in each speed interval for the segment of roadway 

by using the data from the city of Montreal. Further, to accommodate for repeated vehicle speed 

proportion observations, the authors developed a panel mixed version of the ordered fractional 

split model.   

While ordered fractional split approach was successfully employed for vehicle speed 

proportions and injury severity proportions in existing transportation literature (Yasmin et al., 

2016; Yasmin and Eluru, 2018a), it is associated with restrictive assumptions. Specifically, the 

ordered fractional split model assumes that the thresholds in the model structure remain the 

same for the entire population. The limitation is analogous to the limitation of the traditional 

ordered response model (Eluru et al., 2008; Yasmin et al., 2014; Yasmin et al., 2016; Fountas 

and Anastasopoulos, 2017). To address this limitation, we propose a generalized version of the 

ordered fractional split model by allowing for the exogenous variable impacts to vary across 

the alternatives. Further, in the presence of adequate repeated proportion measures for the same 

roadway segment multiple levels of unobserved factors influence the dependent variable (see 

Mannering and Bhat, 2014 and Mannering et al., 2016 for a discussion of the impact of ignoring 

unobserved heterogeneity on model estimates). The ordered fractional split model is enhanced 

to allow for the impact of common unobserved factors1 across multiple levels (roadway, 

segment, direction, day and time period). Specifically, we propose to estimate a panel mixed 

generalized ordered probit fractional split (PMGOPFS) model to examine critical factors 

contributing to vehicle operating speed on roadways. The proposed model is estimated for 

vehicular speed data obtained from 8 arterial roads in Orlando for the year 2016. The data is 

obtained for weekday peak (morning and evening) and off-peak hours for one randomly chosen 

week for each roadway throughout the year. The exogenous variables that are considered in the 

                                                 
1 A number of studies in transportation literature adopted various modeling framework to show that dependent 

variable in multiple dimension (vehicular speed or crash) share unobservable factors and hence multivariate in 

nature. The reader would refer to (Russo et al., 2014); (Alarifi et al., 2017); (Bogue et al., 2017); (Xin et al., 2017); 

(Cai et al., 2018); (Fountas et al., 2018); (Yasmin and Eluru, 2018b) 
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current empirical study include geometry, roadway, traffic, land use and environmental 

attributes. To the extent of the authors’ knowledge, this is the first attempt to employ such an 

econometric framework for ordered fraction/proportion variables in extant literature (not just 

in transportation).  

 

2 BACKGROUND AND CURRENT STUDY IN CONTEXT 

 

2.1 Earlier Research 

Several research efforts in existing literature have explored the factors affecting vehicle speed. 

A detailed review of earlier literature is available in Eluru et al., 2013. Table 1 provides a brief 

summary of the literature on vehicle speed modeling. The table provides information on the 

study, facility location, and roadway functional classification, application area, dependent 

variable considered and modeling methodology employed. The studies presented in Table 1 

are categorized along two streams: (1) studies examining vehicle speed profile considering 

partial distribution and (2) studies examining vehicle speed profile considering full distribution.  

 Several observations can be made from Table 1. First, a large share of earlier research 

on vehicle speed modeling considered partial operating speed profile (20 studies out of 25). 

Second, among studies considering partial vehicle speed profile, the dependent variable 

representation was based on 85th percentile or mean vehicular speed. Studies that considered 

full operating speed profile, the exact representations of vehicular speed include proportions of 

vehicle speed categories and mean vehicular speed over a specific time interval. Third, the 

analysis of vehicle speed has extensively examined both rural and urban facilities with higher 

number of studies in the rural category. In terms of roadway functional classification, earlier 

research has explored vehicle speed profiles for two lane highways, multi-lane highways, 

freeways, local, collector and arterial roads. Fourth, the major focus in examining vehicle speed 

profile were road safety, geometric design, and/or speed limit compliance while few studies 

also focused on exploring several modeling frameworks in this aspect. Finally, the 

methodologies considered in these studies include simple approaches such as graphical plots, 

linear regression (or ordinary least squares) approaches, and Analysis of Variance (ANOVA). 

Among advanced econometric modeling approaches, researchers have employed mixed effect 

models (to recognize presence of repeated measures), three stage least square estimation, panel 

mixed ordered fractional split model and Artificial Neural Network methods.  

 Based on earlier literature, the various factors identified as influencing vehicle speed 

distribution profile include – radius and length of the curve, curvature change ratio, preceding 

tangent length, grade, roadway geometry, uninterrupted travel distance, width and type of 

street, posted speed limit, lane width, roadside hazard, available sight distance, heavy vehicle 

proportion, access density, heavy rainfall and high wind speed.  

 

2.2 Current Study in Context 

Based on the literature review, we can see that only a handful of studies have considered 

modeling the entire vehicle speed distribution. The current study contributes to literature in this 

stream by proposing, formulating and developing a new econometric model structure. 

Specifically, we build on earlier research of Eluru et al., 2013 by proposing a panel mixed 

generalized ordered probit fractional split (PMGOPFS) model. In this approach, we recognize 

that the threshold parameters are not constant across the entire sample population. The 

framework is formulated to allow these parameters to vary in response to observational 

attributes.  

The reader would note that a maximum likelihood approach used for discrete 

choice/outcome variables is not valid for fractional dependent variables. For traditional discrete 

outcome models, the maximum likelihood approach is employed for maximizing the likelihood 
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of a single observed outcome. However, the dependent variable in the current analysis 

represents the proportion of vehicles in various speed category. Thus, the presence of the 

multiple observed outcomes with fractional values that sum up to 1 does not lend itself to 

maximum likelihood approaches. An alternative approach referred to as a quasi-likelihood 

approach has been proposed and widely implemented in econometrics literature for modeling 

such fractional dependent variables (see for example Papke and Wooldridge, 1996, Sivakumar 

and Bhat, 2002). Hence, the proposed model is estimated employing a maximum simulated 

quasi-likelihood based objective function.  

The data for the analysis is drawn from 8 arterial roads with a total of 368 segments in the 

state of Florida. The hourly speed proportions on weekdays (Monday to Friday) from 6am – 

9pm for a random week in the year are considered for each roadway. Further, within each time 

period - morning peak (6am-9am), off-peak (9am-4pm and 7pm-9pm) and evening peak (4pm-

7pm) - 2 hourly data records are randomly drawn for analysis. Based on the data considered, 

several levels of hierarchy exist including arterial, segment, week, day and hour. In our 

proposed model, we allow for unobserved factors at these various levels. Finally, we compute 

aggregate level elasticity measures to provide a clear picture of attribute impact on vehicular 

speed profile. The effects are computed for the proposed framework (PMGOPFS) as well as 

the model counterparts (OPFS and GOPFS) across all speed levels (for different roads) for 

comparison purpose. The proposed study is the first attempt at modeling multiple levels of 

unobserved factors in fractional split models.  

 

3 METHODOLOGY 

The focus of our study is to model proportions of vehicle speed categories by employing 

PMGOPFS modeling approach. The econometric framework for the PMGOPFS model is 

presented in this section. 

  

3.1 Model Structure 

Let q (q = 1, 2, …, Q) be an index to represent observation unit (hour of weekdays for roadway 

segment), p (p = 1, 2, …, P) be an index for different level of repetition measures (roadway, 

roadway-day, roadway-hour, roadway-day-direction) at observation unit q and let k (k = 1, 2, 

3, …, K) be an index to represent vehicle speed category. The latent propensity equation for 

vehicle speed at the qth unit and pth interval can be written as: 

𝑦𝑞
∗ = (𝛼 + 𝛾𝑞 + 𝛿𝑞𝑝)𝑍𝑞 + 𝜉𝑞 , (1)  

This latent propensity 𝑦𝑞
∗ is mapped to the actual vehicle speed category proportion 𝑦𝑞𝑘  

by the 𝜓 thresholds (𝜓0 =-∞ and 𝜓𝑘= ∞). 𝑍𝑞 is a vector of attributes that influences the 

propensity associated with vehicle speed. 𝛼 is a corresponding vector of mean effects, and 𝛾𝑞 

is another vector of unobserved factors moderating the influence of attributes in 𝑍𝑞 on the 

vehicle speed propensity for analysis unit q. 𝛿𝑞𝑝 is a vector of unobserved effects specific to 

repetition level 𝑝. 𝜉𝑞 is an idiosyncratic random error term assumed to be identically and 

independently standard normal distributed across individuals q. 

The PMGOPFS model relaxes the constant threshold across observation to provide a 

flexible form of the OPFS model. The basic idea of the PMGOPFS is to represent the threshold 

parameters as a linear function of exogenous variables. Thus, the thresholds are expressed as: 

𝜓𝑘 = 𝑓𝑛(𝑥𝑞𝑘) (2)  
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where, 𝑥𝑞𝑘 is a set of exogenous variables (including a constant) associated with 𝑘 th threshold. 

Further, to ensure the accepted ordering of observed vehicle speed proportion (−∞ < 𝜓1 <
𝜓2 <  … … … < 𝜓K−1 < +∞), we employ the following parametric form as employed by Eluru 

et al.(Eluru et al., 2008): 

𝜓𝑘 = 𝜓𝑘−1 + 𝑒𝑥𝑝((𝛽𝑘 + 𝜃𝑘𝑞)𝑥𝑞𝑘) (3)  

where, 𝛽𝑘 is a vector of parameters to be estimated. 𝜃𝑘𝑞 is another vector of unobserved factors 

moderating the influence of attributes in 𝑥𝑞𝑘 on the vehicle speed propensity for analysis unit 

q and vehicle speed category k.  

 

3.2 Model Estimation 

The model cannot be estimated using conventional Maximum likelihood approaches. Hence, 

we resort to quasi-likelihood based approach for our methodology (see (Papke and Wooldridge, 

1996; Sivakumar and Bhat, 2002 for detailed discussion). To estimate the parameter vector, we 

assume that  

𝐸(𝑦𝑞𝑘|𝑍𝑞𝑘) = 𝐻𝑞𝑘(𝛼, 𝜓, 𝛿𝑞 , 𝜃𝑘𝑞), 0 ≤ 𝐻𝑞𝑘  ≤ 1, ∑ 𝐻𝑞𝑘 = 1
𝑘

𝑘=1
 (4)  

𝐻𝑞𝑘 in our model is the generalized ordered probit probability for vehicle speed category k 

defined as  

𝑃𝑞𝑝𝑘 = {𝐺 [(𝜓𝑘−1 + 𝑒𝑥𝑝((𝛽𝑘 + 𝜃𝑘𝑞)𝑥𝑞𝑘)) − {(𝛼′ + 𝛿𝑞𝑝
′ )𝑍𝑞} ] − 𝐺 [(𝜓𝑘−2 +

𝑒𝑥𝑝(𝛽𝑘 + 𝜃𝑘𝑞)𝑥𝑞𝑘) − {(𝛼 + 𝛾𝑞 + 𝛿𝑞𝑝)𝑍𝑞}]} 
(5)  

The proposed model ensures that the proportion for each vehicle speed category is 

between 0 and 1 (including the limits). In estimating the PMGOPFS model, it is necessary to 

specify the structure for the unobserved vectors 𝛿, 𝛾 𝑎𝑛𝑑 𝜃 represented by Ω. In this paper, it 

is assumed that these elements are drawn from independent realization from normal population: 

Ω~𝑁(0, (𝜋2, 𝜎𝑝
2, 𝜐𝑘

2)). Thus, conditional on Ω, the quasi likelihood function (see (Papke and 

Wooldridge, 1996)) for a discussion on asymptotic properties of quasi likelihood proposed) 

may be written for unit q for various repetitive measures as: 

𝐿𝑞(𝛼, 𝜓| Ω) =  ∏ ∏ = {𝑃𝑞𝑝𝑘}𝑑𝑞𝑘

𝐾

𝑘=1

𝑃

𝑝=1

 (6)  

where 𝑑𝑞𝑘 is the proportion of vehicles in speed category k. Finally, the unconditional 

likelihood function can be computed for site unit q can be written as: 

𝐿𝑞(𝛼, 𝜓, Ω) = ∫ 𝐿𝑞(𝛼, 𝜓| Ω) dF (Ω)
Ω

 (7)  

where F is the multidimensional cumulative normal distribution. The quasi log-likelihood 

function is: 
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𝐿(𝛺) =  ∑ 𝐿𝑞 (𝛼,𝑞  𝜓, Ω)                          (8)  

The log-likelihood function in Equation (8) involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in 𝛿𝑞𝑝.  

In the current study context, we estimate 𝛿𝑞𝑝 for different levels of repetition measures 

(𝑝). Specifically, we evaluate unobserved effects at roadway, roadway-day, roadway-hour, 

roadway-day-direction levels in addition to the simpler hourly level. The flexibility offered by 

testing for unobserved heterogeneity enhances the model development exercise. For example, 

at a roadway level, factors such as design and pavement quality differences across roadways 

can influence speed distribution. On some facilities, based on prior crash experience, a number 

of speed bumps might be installed at multiple locations. The data on the presence of such speed 

bumps (or other such micro-treatments) are rarely available for analysis. At a roadway-day 

level, repaving or maintenance activities on a particular day could influence the speed 

distribution across the roadway. At a roadway-hour level, the specific design characteristics of 

the roadway and its interaction with traffic volumes could result in a specific speed profile. 

While some design characteristics and interactions with traffic volumes are considered in 

modeling exercise, it is not possible to consider all possible combinations. At a roadway-day-

direction level, a major accident occurring on a particular day on a roadway facility could affect 

speed distribution. The reader would note that the multiple levels identified here apply to any 

random parameters estimated such as lane drop i.e. the influence of unobserved factors 

associated with an observed attribute can also be accommodated at multiple levels identified 

above. Thus, the proposed framework by allowing for additional flexibility allows the analyst 

to avoid conflation of unobserved effects on speed profiles.  

In accommodating unobserved effects at different levels, random numbers are assigned to 

the appropriate observations of the repetition measures. For example, at roadway level, we 

have 8 arterials. Thus, in evaluating unobserved effect at the roadway level, 8 sets of different 

random numbers are generated specific to 8 roads and assigned to the data records based on 

their roadway ID. The random numbers are assigned for other repetition levels following the 

same analogy in estimating the model. In the current paper, we use a quasi-Monte Carlo (QMC) 

method proposed by Bhat (Bhat, 2001) for discrete choice models. Within the broad framework 

of QMC sequences, we specifically use the Halton sequence in the current analysis. In our 

analysis, a rigorous examination of the influence of the number of Halton draws was conducted. 

The model estimation routine is coded in GAUSS Matrix Programming software (Aptech, 

2015) 

 

4 DATA AND DEPENDENT VARIABLE  

The data for the empirical study is obtained for 8 major arterials in state of Florida including 

368 segments for the year 2016. Figure 1 represents the location of the arterial roads considered 

in the study. The number of segments for each road range from 6 to 89. In our data, we have a 

total of 368 segments for the current analysis and we extract the vehicular speed for 8 arterial 

roads for weekdays only from 6am to 9pm. For these 8 arterial roads, one random week in 2016 

is chosen for data retrieval. For our study, weekday data (randomly a week for each roadway) 

from 6am-9pm were retrieved. Specifically, a total of 6 hours with 2 records from each time 

period (morning peak (6am-9am), off-peak (9am-4pm and 7pm-9pm) and evening peak (4pm-

7pm)) were considered for model analysis. The reader would note that the 2 records chosen are 

selected randomly i.e. they vary across days and arterials. The vehicle speed data is compiled 

from Regional Integrated Transportation Information System (RITIS) for the year 2016. The 

RITIS database is an automated data sharing system which includes real time data feeds. After 
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processing the records, we obtained a total of 27600 observations. These records were split into 

two datasets: 1) model estimation sample with 11040 observations and 2) holdout sample with 

16560 records set aside for validation analysis. The sample size for estimation was guided by 

run times for estimating multiple levels of unobserved heterogeneity.  

The vehicle speed data gathered from RITIS includes information on the travelling speed 

of vehicles on a second by second level for each roadway segment. The second by second data 

were aggregated to obtain number of vehicles under various speed categories for each hour. 

For the analysis purposes, the following speed categories are used: 1) ≤ 20 mph; 2) 20-25 mph; 

3) 25-30 mph; 4)30-35 mph; 5) 35-40 mph and 6) ≥ 40 mph. The dependent variable for 

fractional split models can be represented as a proportion (number of vehicles with speed 

category in a segment during an hour/total number of vehicles in a segment during an hour) as 

follows: (1) Proportion of vehicle speed ≤ 20 mph, (2) Proportion of vehicle speed greater than 

20 mph and ≤ 25 mph, (3) Proportion of vehicle speed greater than 25 mph and ≤ 30 mph, (4) 

Proportion of vehicle speed greater than 30 mph and ≤ 35 mph, (5) Proportion of vehicle speed 

greater than 35 mph and ≤ 40 mph and (6) Proportion of vehicle speed greater than 40 mph. 

Table 2 provides the summary statistics of the vehicle speed proportion variables at segment 

level. From Table 2, we can observe that majority of the traffic flow on arterial roads is in the 

speed range of 25-30 mph. 

 

4.1 Exogenous Variables  

For examining the critical factors contributing to vehicle speed profile of arterials, we compiled 

additional information on a host of exogenous variables including roadway characteristics, land 

use attributes, built environment, traffic characteristics and temporal variables. These variables 

are generated for each segment across all roadways considered. Roadway characteristics are 

obtained from the Florida Department of Transportation (FDOT). Transportation Statistics 

division. Traffic, land use and built environment attributes are obtained from the US Census 

Bureau and FDOT. Information about the temporal attributes are collected from Florida 

Automated Weather Network (FAWN).  

Roadway attributes considered include segment lengths, width and type of median, 

maximum and minimum number of lane, lane drop, total number of intersections in the 

segment, average posted speed limit, average width of the sidewalk, inside and outside shoulder 

mean width and length of bike lane. Two types of median are considered based on the shoulder 

type: soft or hard. Lane drop variable is defined as the difference between maximum and 

minimum number of lane in the segment. Land use attributes included area of urban, 

residential, industrial, institutional, recreational, office, and land use mix within a 1-mile buffer 

around the roadway. For traffic characteristic, average annual daily traffic (AADT), average 

annual daily truck traffic (truck AADT) and proportion of heavy traffic are considered. In case 

of built environment, the study includes total number of financial, commercial, business, 

educational, recreational and parking facilities within a 1-mile buffer. Finally, weather data 

such as information on temperature, average precipitation, wind speed, relative humidity and 

dew point temperature at an hourly level are gathered for environmental characteristics. 

Table 3 summarizes sample characteristics of the explanatory variables with the 

appropriate definition considered for final model estimation along with the minimum, 

maximum and mean values at a segment level. Several functional forms and specification for 

different variables are explored and those are used which provide the best result. The final 

specification of the model development was based on removing the statistically insignificant 

variables in a systematic process based on 90% significance level. 
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5 EMPIRICAL ANALYSIS 

 

5.1 Model Specification and Overall Measure of Fit 

The empirical analysis involves estimation of three different models: 1) Ordered Probit 

Fractional Split model (OPFS), 2) Generalized Ordered Probit Fractional Split Model (GOPFS) 

and 3) Panel Mixed Generalized Ordered Probit Fractional Split Model (PMGOPFS) model. 

The quasi log-likelihood values at convergence for the different models are as follows: 1) OPFS 

(18 parameters) is -17518.38, 2) GOPFS (26 parameters) is -17437.79 and 3) PMGOPFS (30 

parameters) is -17388.07. The corresponding log-likelihood at constants is -18467.60. Prior to 

discussing the estimation results, we compare the performance of these models in this section. 

We employ log-likelihood ratio test for comparing these models. The log-likelihood test 

statistic is computed as 2[𝐿𝐿𝑈 − 𝐿𝐿𝑅], where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the 

unrestricted and the restricted models, respectively. The computed value of the LR test is 

compared with the ℵ2 value for the corresponding degrees of freedom (dof). The resulting LR 

test values for the comparison of OPFS/GOPFS, OPFS/PMGOPFE and GOPFS/PMGOPFS 

models are 161.18 (8 dof), 260.62 (12 dof) and 99.44 (4 dof), respectively. The log-likelihood 

ratio test values indicate that PMGOPFS model outperform both OPFS and GOPS at any level 

of statistical significance. The reader would note that Akaike Information Criterion and 

Bayesian Information Criterion offer the same conclusions in favor of the PMGOPFS model.  

 

5.2 Model Estimation Results 

In discussing the estimation results, to conserve on space, we will restrict ourselves to the 

discussion of PMGOPFS model results (see Appendix for the results of OPFS and GOPFS 

models). Table 4 represents the model estimation results of the PMGOPFS model. In Table 4, 

column 2 presents the estimates for propensity and columns 3 through 6 represent the threshold 

parameters. In the propensity, a positive (negative) coefficient increases (decreases) the 

likelihood of higher speed categories. When the threshold parameter is positive (negative), the 

result implies that the threshold is bound to increase (decrease). For the ease of presentation, 

the estimation results are discussed by variable groups 

 

5.2.1 Roadway Characteristics 

The results associated with segment length indicate that longer segments have a higher 

likelihood of observing higher vehicle speeds (see (Dinh et al., 2013) for similar result). As the 

stretch of roads between intersections increases (as is the case in our study for segments) speed 

proportions are likely to skew rightward. Lane drop variable shows a negative association with 

speed proportion propensity. Lane drop variable implies a reduction in number of lanes thus 

resulting in drivers slowing down. Further, we found that lane drop has significant variability 

across observations (at an hourly level) as indicated by the significant standard deviation 

parameter. An increase in width of average inside shoulder is positively associated with speed 

propensity. Wider inside shoulder is likely to provide additional safety margin for drivers 

encouraging them to drive at a higher vehicular speed. 

Average sidewalk width shows a negative effect on vehicular speed proportion 

propensity.  With wider sidewalk, there is likely to be higher pedestrian activity that potentially 

results in vehicle operation at a lower speed (for a similar result see Wang, 2006). A negative 

relationship is found between presence of an intersection and vehicular speed proportion 

propensity. An increase in average bike lane length results in reduced vehicular speed 

propensity. The impact on the threshold value for the variable indicates a lower likelihood of 

speed proportion of above 40mph with increased average length of bike lane.  
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5.2.2 Traffic Characteristics 

As expected, vehicular speed is also influenced by the volume of traffic on the road (Ericsson, 

2000). The estimated result for AADT implies a negative impact on vehicular speed proportion 

propensity. With higher volume of traffic, vehicle density will increase which will result in low 

vehicular speed, a result also observed in (Islam and El-Basyouny, 2015). 

 

5.2.3 Land Use Characteristics 

The results associated with industrial area indicate that higher proportion of industrial area is 

negatively associated with the vehicular speed proportion. With higher proportion of industrial 

area, there is likely to be more traffic activity which results in vehicle operation at lower speeds. 

The variable also has a positive impact on the threshold between 30-35mph and 35-40mph i.e. 

further increasing the probability of lower speed alternatives. 

Among different built environment characteristics explored in the study, only number 

of shopping centers within 1-mile of the road segment is found to have a significant impact on 

the vehicular speed proportion. The variable does not have any effect on the speed propensity 

but demonstrates a lower likelihood of speed proportion above 30-35mph (as the thresholds 

move to the right starting with the threshold between 20-25 mph and 30-35 mph). This is 

intuitive because, with high number of shopping centers, there is likely to be higher traffic and 

pedestrian activity that potentially results in low vehicular speed. 

 

5.2.4 Environmental Characteristics 

Various types of environmental attributes were considered in the model estimation process 

including average temperature, average precipitation, wind speed and humidity. However, 

only, average precipitation was found to have significant impact on vehicle speed profile in our 

study context. The estimated result shows that drivers have a disinclination towards higher 

vehicular speed in the presence of high precipitation, perhaps because of the reduced visibility 

(see (Feng, 2001) for similar result). The effect of rain on the threshold also indicates the lower 

likelihood of speed proportion above 35-40mph. 

 

5.2.5 Road Specific Characteristics 

Given the availability of repeated measures for each roadway, we also considered road specific 

measures in our analysis. Among the road specific indicator variables, Lake Underhill, SR 15, 

SR 426, SR 551 and University Blvd variables were found to have a significant impact on 

speed propensity (SR 434, SR 436 and SR 50 serve as the base for these variables). The 

negative sign on latent propensity associated with Lake Underhill, SR 15 and SR 426 indicator 

variable suggests that the vehicular speed on these roads are usually lower compared to SR 

434, SR 436 and SR 50. Further, the positive effect of Lake Underhill SR 426 and SR 15 on 

the fourth and second threshold indicates a lower likelihood of higher vehicular operating 

speed. On the other hand, we observe an increase in speed propensity on University Blvd 

relative to SR 434, SR 436 and SR 50 indicating a rightward shift in the speed proportion. The 

result associated with SR 551 indicates that the variable does not have any effect on the speed 

propensity but demonstrates a higher likelihood of speed proportion above 20-25 mph.   

 

5.2.6 Unobserved Effects 

In our proposed model, we estimated unobserved effects at multiple levels: roadway, roadway-

day, roadway-day-direction and roadway-hour. Among different considered levels, we found 

that the roadway, roadway-day and roadway-day-direction level effects have significant 

influence on vehicular speed profile. The estimation results of these standard deviations are 

presented in last row panel of Table 4. The significant standard deviation parameters at 

different repetition measures provide evidence toward supporting our hypothesis that it is 
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necessary to incorporate these unobserved effects in examining vehicle speed. These variables 

indicate that the vehicle speed profile may vary for different roadway based on the unobserved 

effects specific to different levels.  

 

6 MODEL PREDICTION EXERCISE 

In order to demonstrate the applicability of the proposed framework for modelling vehicular 

speed proportion on arterial roads in Orlando, a prediction exercise was undertaken using the 

model parameter estimates. The predicted proportion are compared with the actual observed 

proportion in the dataset. We perform two prediction exercises: 1) In-sample prediction: for 

the records used in model analysis and 2) holdout sample prediction: for the records that have 

been set aside for validation analysis. Figure 2 represents the heat map of absolute differences 

between observed and predicted proportion for the in-sample (2a) and holdout-sample (2b) 

vehicular speed data. 

 From Figure 2a, we can observe that, for the in-sample prediction comparison, the result 

is very good. For around 71% of the categories (37 out of 48), we have less than 0.03 difference 

between observed and predicted vehicular speed proportions. For SR 436, SR 434, SR 436 and 

University Blvd, the prediction is no different than the actual observed proportion. For SR 15, 

the result is slightly worse because in the observed data we have a unusually high percentage 

in the lower speed category. The corresponding results presented in Figure 2b, for the holdout 

sample prediction exercise is slightly inferior but acceptable. For about 58% of the categories 

(28 out of 48), the predicted proportion differs by less than 0.03.  Overall trend of the heat map 

is quite similar to the in-sample data as prediction is good for SR 436, SR 434, SR 436 and 

University Blvd while we observe a higher difference between observed and predicted 

proportion in the lower speed categories for SR 15. From both figures, we can conclude that, 

the model performance for the in-sample and holdout-sample predictions are indicative of 

capturing the major speed trends.  

 

7 ELASTICITY EFFECTS 

The estimated results from Table 4 do not directly provide the exact magnitude of the effects 

of variables on the probability of each speed level. To quantify the impact of factors more 

clearly, we compute aggregate level elasticity effects for a subset of independent variables 

including length of the segment, intersection density, average bike lane length, AADT and 

proportion of industrial area. In our study, we investigate the effect as percentage change in the 

expected proportions of vehicular speed in response to the increase of the explanatory variable 

by 10% (see Eluru and Bhat, 2007 for a discussion on the methodology for computing 

elasticities). The effects are computed for the proposed framework (PMGOPFS) as well as the 

model counterparts (OPFS and GOPFS) across all speed levels. However, for the sake of 

brevity, we present the results for the top three speed categories PMGOPFS and GOPFS models 

(Figure 3). A detailed table documenting all the elasticity effects across speed categories and 

models is included in the appendix (Table A.3). The numbers in Figure 3 and Table A.3 can be 

interpreted as the percentage change in the expected vehicular speed proportions (increase for 

positive sign and decrease for negative sign) due to the change in the exogenous variable. For 

instance, the value of elasticity corresponding to segment length (from Figure 3, for speed 

>40mph) indicates that an increase in segment length of Lake road by 10% results in a 10.65% 

increase in the speed proportion of above 40mph.  

 The reader would note that the elasticity effects need to be described across multiple 

dimensions including overall effects from the PMGOPFS model, variations in elasticity across 

different roads and differences between PMGOPFS and GOPFS models. Based on the elasticity 

effects presented in Figure 3, following observations can be made. First, among the variables 

considered for elasticity computation, segment length is the most significant contributor 
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associated with higher vehicular speed. On the other hand, AADT, intersection density and 

proportion of industrial area are the important factors responsible for reduction in speed 

probability. Second, the average bike lane length variable does not have a significant influence 

on speed profile except for SR 426’s highest speed level (>40mph). Third, with regards to road 

specific analysis, we found substantial and significant differences in elasticities across different 

roads. For instance, increased segment length is likely to lead to higher vehicular speeds for 

SR 426 relative to the other roads. On the other hand, AADT and intersection density variables 

result in a higher reduction in speed proportion for SR 15 compared to the other roads. Finally, 

in terms of comparison across different frameworks adopted in the study, we found substantial 

differences in elasticities. For example, in case of Lake road, for the industrial area variable, 

the PMGOPFS model predicts an increase in speed proportion between >20-25mph (Table 

A.3) while the other two models predict a reduction for the same speed category. Thus, it is 

evident that allowing for a flexible specification of observed and unobserved factors provides 

more accurate representation of variable impacts.  

 

8 CONCLUSIONS 

Vehicle operating speed plays a significant role in many fields of transportation engineering 

including transportation safety, traffic flow modeling, geometric design, vehicle emission and 

road user route decisions. Thus, it is not surprising that a number of studies explored the 

relationship between vehicular speed on roadway facilities (including roads, curves and 

tangents) and various exogenous factors; including geometric attributes, traffic characteristics 

and driver characteristics. A majority of these studies developed vehicle speed prediction 

models based on the 85th percentile speed as opposed to employing the full speed distribution. 

The current study contributes to literature in this stream by proposing, formulating and 

developing a new econometric model structure considering the full vehicle operating speed 

distribution. Specifically, we estimated a panel mixed generalized ordered probit fractional 

split (PMGOPFS) model to examine critical factors contributing to vehicle operating speed on 

roadways. The study was conducted by using vehicular speed data obtained from 8 arterial 

roads in the state of Florida for the year 2016. The data is obtained for weekday 6 hours (2 

from each time period) for one randomly chosen week for each roadway throughout the year. 

A host of exogenous variables are considered including geometry, roadway, traffic, land use 

and environmental attributes. The proposed model is estimated employing a quasi-

loglikelihood based objective function because maximum likelihood approach is not valid for 

fractional outcomes. A comparison of the proposed model with traditional OPFS and GOPFS 

was conducted using a loglikelihood ratio test. The test values clearly highlighted the 

superiority of the PMGOPFS model over other two approaches. 

The model is developed to allow for the impact of parameter heterogeneity and common 

unobserved factors across multiple levels (roadway, segment, direction, day and time period). 

In terms of random effects, we found that lane drop has significant variability for the vehicular 

speed proportion. Again, we estimated unobserved effects for different repetition measures 

including: roadway, roadway-day, roadway-day-direction and roadway-hours. Of these 

parameters, roadway, roadway-day and roadway-day-direction level effects significantly 

influenced vehicular speed profile. The findings suggest that vehicle speed profile may vary 

for different roadway based on the unobserved effects specific to different repetition measures 

and thus it is necessary to incorporate these unobserved effects in examining vehicle speed. 

Finally, we undertake a prediction exercise to evaluate the performance and applicability of the 

proposed framework and the results indicate that the model performs quite adequately for both 

in-sample and holdout-sample datasets. 

In our research, to further quantify the impact of various exogenous factors, we compute 

aggregate level elasticity effects for a subset of independent variables across different roads for 
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all speed levels.  The effects are computed for the proposed framework (PMGOPFS) as well 

as the model counterparts (OPFS and GOPFS) across all speed levels for comparison purpose. 

The elasticity analysis indicated that segment length is the most significant contributor 

associated with higher vehicular speed whereas in terms of reduction in speed, AADT, 

intersection density and proportion of industrial area are the important factors. Moreover, the 

effects indicated that there were substantial and significant differences in elasticities across 

different roads. Finally, we found substantial differences in elasticities across the three model 

structures. For instance, the proposed model predicts an increase in speed proportion between 

>20-25mph for industrial area while the other two models show a reduction for the same 

category. Such differences could be attributed to the fact that the proposed approach allows for 

a more flexible framework by accommodating for observed and unobserved heterogeneity. 

However, the study is not without limitations. In our analysis, we used 2 hours of speed 

data from each time slot. It might be interesting to estimate a similar model using all hourly 

records. Further, the records considered in our analysis are entirely for conditions with potential 

traffic congestion. A future research effort can be conducted by considering the night hours to 

capture the significant differences across the different time periods. 
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FIGURE 1 Location of the arterial roads. 
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FIGURE 2a In-sample Prediction Comparison for Arterial Roads (sample size = 11,040) 

 

 

 

 

FIGURE 2b Out-sample Prediction Comparison for Arterial Roads (sample size = 16,560) 
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FIGURE 3 Elasticity effect analysis at road specific level2 

                                                 
2  

GOPFS= Generalized ordered probit fractional split model, PMGOPFS= Panel mixed generalized ordered probit fractional split mode 
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TABLE 1 Brief Summary of Earlier Research 

Study 
Facility 

Type 
Roadway type Application areas 

Dependent 

Variable 
Model Structure 

Studies Considering Partial Vehicle Speed Profile 

(Garber and Gadirau, 

1988) 
Rural 

Interstate, arterial 

and major collector 

roads 

Road safety 
85th and 50th 

percentile speed 

Regression and Analysis of Variance 

(ANOVA) analysis 

(Kanellaidis et al., 

1990) 
Rural Two lane roadways 

Promoting road design 

consistency 
85th percentile speed Linear regression analysis 

(Lamm et al., 1990) Rural Two lane roadways 
Geometric design consistency 

evaluation 
85th percentile speed Ordinary linear regression analysis 

(Krammes et al., 

1995) 
Rural Two lane roadways 

Geometric design consistency 

evaluation 
85th percentile speed 

Ordinary least square linear regression model 

(OLS) 

(Poe et al., 1996)  Urban 
Low-speed collector 

street 
Geometric design 85th percentile speed Single regression equation 

(Liang et al., 1998) Rural Interstate highway Road safety Mean speed Regression model 

(Gattis and Watts, 

1999) 
Urban Two lane street Road safety 85th percentile speed 

Graphical comparison, linear regression 

analysis 

(Fambro et al., 

2000)  
Rural 

Multilane and two-

lane roadway  
Geometric design and safety Mean speed A comparison study and regression analysis 

(Poe and Mason Jr, 

2000) 
Urban 

Low-speed collector 

street 
Geometric design 85th percentile speed A mixed effect model 

(Polus et al., 2000) Rural Two lane highways Geometric design 85th percentile speed  Linear regression analysis 

(Fitzpatrick et al., 

2001) 

Urban 

and 

Suburban 

Arterial road Design consistency evaluation 85th percentile speed Multiple regression analysis 

(McFadden et al., 

2001) 
Rural Two lane roadways Methodological 85th percentile speed Artificial neural network (ANN) models 

(Fitzpatrick et al., 

2003) 

Urban 

and 

Suburban 

Arterial, collector 

and local 
Policy on geometric design 85th percentile speed Linear regression model 
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(Gong and 

Stamatiadis, 2008) 
Rural Four lane highways 

Geometric design consistency 

evaluation 
85th percentile speed 

Ordinary least square linear regression model 

(OLS) 

(Perco, 2008) Rural Two lane roadways 
Geometric design consistency 

evaluation 
85th percentile speed Regression equations 

(Himes and 

Donnell, 2010) 

Rural 

and 

urban 

Four lane highways Evaluate speed consistency Mean speed 
A simultaneous equations framework, three 

stage least square estimator (3SLS) 

(Dinh et al., 2013) Urban Residential street Road Safety 
Mean and 85th 

percentile speed 

Single equation regression (SER), 

Simultaneous Equation Approach (SEA) and 

also with Neural Networks (NN) 
(Jacob et al., 2013) Rural Two lane roadways 

Geometric design consistency 

evaluation 
85th percentile speed 

Regression equations and Analysis of 

Variance (ANOVA) analysis 

(Semeida, 2014) Rural Multi-lane highways Road safety 85th percentile speed 
Multiple linear regression model and Artificial 

neural network (ANN) models 

(Russo et al., 2015) Rural Two lane roadways Road Safety 85th percentile speed Comparison study, graphical plotting 

(Islam and El-

Basyouny, 2015) 
Urban 

Collector and local 

street 
Policy on geometric design 

Mean speed (free 

flow) 
Varying intercept multilevel model 

(Anastasopoulos 

and Mannering, 

2016) 

Rural 

and 

urban 

Interstate highways Road Safety 
55mph, 65mph and 

70mph 

Fixed and random parameter seemingly 

unrelated regression equation 

(Wang et al., 2018) Rural 
Two lane highways 

(curve) 
Road Safety 45-55mph speed Generalized estimation equation (GEE) 

Studies Considering Full Vehicle Speed Profile 

(Tarris et al., 1996)  Urban 
Low-speed collector 

street 
Geometric design 

Entire speed profile – 

Individual vehicle 

operating speed 

 

Regression and Panel analysis 

(Figueroa Medina 

and Tarko, 2005) 
Rural Two-lane highways Road safety 

Entire speed profile 

Mean speed and 

speed dispersion, any 

percentile speed 

Ordinary least square regression with panel 

data (OLS-PD) 

(Ko and Guensler, 

2005) 
Urban Freeway segment Traffic flow modeling 

15 minutes mean 

speed 
Gaussian Mixture Model  



         

 

24 

 

(Park et al., 2010) Urban Interstate highway Traffic flow modeling 

24 hours speed data, 

Morning, evening 

and off-peak  

Bayesian Mixture Model 

(Eluru et al., 2013) Urban 
Local and arterial 

roads 

Methodological and speed 

compliance 

Entire speed profile 

grouped as 

proportions 

Panel mixed ordered probit fractional split 

model 
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TABLE 2 Descriptive Statistics of Vehicle Speed Related Dependent Variables 

Variable Names 

(N=8160) 
Definition Minimum Maximum Average 

Standard 

deviation 

Speed ≤ 20 mph 
Proportion of vehicle 

speed ≤ 20 mph 
0.000 1.000 0.163 0.300 

Speed 20-25 mph 

Proportion of speed 

greater than 20 mph and 

≤ 25 mph 

0.000 1.000 0.214 0.260 

Speed 25-30 mph 

Proportion of speed 

greater than 25 mph and 

≤ 30 mph 

0.000 1.000 0.268 0.270 

Speed 30-35 mph 

Proportion of speed 

greater than 30 mph and 

≤ 35 mph 

0.000 1.000 0.209 0.261 

Speed 35-40 mph 

Proportion of speed 

greater than 35 mph and 

≤ 40 mph 

0.000 1.000 0.105 0.213 

Speed ≥ 40mph 
Proportion of speed 

greater than 40 mph 
0.000 1.000 0.041 0.153 
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TABLE 3 Summary Characteristics for Independent Variables 
Variable Names 

(N=11040) 
Definition Minimum Maximum Average 

Standard 

Deviation 

Roadway Characteristics  

Length Length of the segment in mile 0.003 3.289 0.668 0.674 

Average median width Ln (Average median width in the segment, in feet) 0.000 4.282 3.047 0.451 

Median with hard shoulder Presence of median with hard shoulder (Dummy variable) 0.000 1.000 0.818 0.386 

Median with soft shoulder Presence of median with soft shoulder (Dummy variable) 0.000 1.000 0.394 0.489 

Maximum number of lane Maximum number of lane present in the segment 1.000 4.000 2.614 0.666 

Minimum number of lane Minimum number of lane present in the segment 1.000 4.000 2.351 0.675 

Average number of lane (Maximum number of lane + Minimum number of lane)/2 1.000 4.000 2.482 0.618 

Lane drop Lane drop in the segment, (Maximum number of lane - 

Minimum number of lane) 
0.000 3.000 0.264 0.520 

Average inside shoulder width 
Ln of (average width of shoulder adjacent to the median in feet 

in segment) 

0.000 2.325 0.587 0.580 

Average outside shoulder 

width 

Ln of (average width of shoulder adjacent to the outer lane in 

feet in segment) 

0.693 2.565 1.385 0.323 

Average sidewalk width Ln of (average width of sidewalk in feet in segment) 0.000 2.428 1.740 0.506 

Average posted speed limit Ln (average posted speed limit in mile per hour in a segment) 
3.434 3.964 3.793 0.103 

Bike lane length Ln of (total length of bike lane in a segment in feet) 0.000 10.323 1.482 3.134 

Average bike lane length Ln of (average length of bike lane in a segment in feet). 0.000 8.993 1.277 2.725 

Intersection density Ln of (total number of intersection in the segment / length of 

segment) 

 

0.000 5.693 2.285 1.379 

Land Use Attribute  

Proportion of residential area 
Proportion of residential area within 1-mile buffer of the 

roadway segment 
0.011 0.670 0.411 0.119 
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Proportion of industrial area 
Proportion of industrial area within 1-mile buffer of the 

roadway segment 
0.000 0.166 0.029 0.033 

Proportion of institutional area 
Proportion of institutional area within 1-mile buffer of the 

roadway segment 
0.000 0.440 0.041 0.058 

Proportion of office area 
Proportion of office area within 1-mile buffer of the roadway 

segment 
0.005 0.255 0.106 0.054 

Proportion of recreational area 
Proportion of recreational area within 1-mile buffer of the 

roadway segment 
0.000 0.145 0.022 0.026 

Land use mix 

Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-

use, 𝑝 is the proportion of the developed land area devoted to a 

specific land-use, 𝑁  is the number of land-use categories 

within 1-mile buffer of the roadway segment 

0.309 0.895 0.639 0.124 

Proportion of urban area Proportion of urban area within 1-mile buffer of the segment 0.553 1.000 0.991 0.053 

Built Environment 

Business center 
Number of business center within 1-mile buffer of the roadway 

segment 
0.000 5.000 0.370 0.804 

Commercial center 
Number of commercial center within 1-mile buffer of the 

roadway segment 
0.000 8.000 1.543 1.789 

Educational center 
Z score3: Number of educational center within 1-mile buffer of 

the roadway segment 
-1.565 3.468 0.000 1.000 

Recreational center 
Z score: Number of recreational center within 1-mile buffer of 

the roadway segment 
-0.844 5.959 0.000 1.000 

Restaurant 
Ln (Number of restaurant within 1-mile buffer of the roadway 

segment) 
0.000 5.106 3.439 0.746 

Shopping center 
Ln (Number of shopping center within 1-mile buffer of the 

roadway segment) 
0.000 5.252 3.634 0.819 

Financial center 
Ln (Number of financial center within 1-mile buffer of the 

roadway segment) 
0.000 4.407 2.511 0.798 

Parking facilities 
Z score: Number of parking Facilities within 1-mile buffer of 

the roadway segment 
-0.229 6.777 0.000 1.000 

                                                 
3 Z-score represents the standardized form of the actual variable. 
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Traffic Characteristic  

AADT 
Ln of (average annual daily traffic in the roadway 

segment/100) 
0.595 9.200 5.221 2.113 

Truck AADT 
Ln of (average annual daily truck traffic in the roadway 

segment/100) 
0.031 6.059 2.524 1.642 

Proportion of heavy traffic 
Total number of truck traffic/ Total number of vehicles in the 

roadway segment 
0.019 0.094 0.048 0.013 

Peak traffic portion Total traffic in peak direction as a percentage 0.510 0.688 0.536 0.013 

Hour AADT 
Proportion of aadt occurring in an hour, in this case, it is 30th 

highest hour (represent as percentage) 
9.000 9.500 9.003 0.034 

Environmental Factor 

Maximum air temperature 
Z score: Maximum air temperature at 2-meter depth in degree 

Celsius 
-3.226 2.026 0.000 1.000 

Minimum air temperature 
Z score: Minimum air temperature at 2-meter depth in degree 

Celsius 
-3.011 2.140 0.000 1.000 

Average air temperature 
Z score: Average air temperature at 2-meter depth in degree 

Celsius 
-3.119 2.093 0.000 1.000 

Average humidity 
Z score: Average relative humidity at 2meter depth in 

percentage 
-2.316 1.634 0.000 1.000 

Maximum dew point 

temperature 

Z score: Maximum dew point temperature at 2-meter depth in 

degree Celsius 
-2.727 1.614 0.000 1.000 

Minimum dew point 

temperature 

Z score: Minimum dew point temperature at 2-meter depth in 

degree Celsius 
-2.636 1.632 0.000 1.000 

Average dew point 

temperature 

Z score: Average dew point temperature at 2-meter depth in 

degree Celsius 
-2.691 1.585 0.000 1.000 

Average wind speed Z score: Average wind speed at 10 m depth (mph) -1.746 2.704 0.000 1.000 

Maximum wind speed Z score: Maximum wind speed at 10 m depth (mph) -1.736 2.990 0.000 1.000 

Temperature difference 
Difference between average air and dew point temperature 

(Air-Dew point) 
-1.434 3.051 0.000 1.000 

Average Precipitation 
Ln (Total amount of precipitation in the road segment in 

inches) 
0.000 0.662 0.003 0.032 

Rain A dummy variable indicating the occurrence of rain 0.000 1.000 0.022 0.146 
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Average solar radiation rate Ln (Average solar radiation rate)  0.001 6.815 5.153 1.498 

Road Specific Attribute 

Lake Dummy for Lake Underhill road 0.000 1.000 0.035 -- 

SR 15 Dummy for SR 15 road 0.000 1.000 0.016 -- 

SR 426 Dummy for SR 426 road 0.000 1.000 0.122 -- 

SR 434 Dummy for SR 434 road 0.000 1.000 0.242 -- 

SR 436 Dummy for SR 436 road 0.000 1.000 0.196 -- 

SR 50 Dummy for SR 50 road 0.000 1.000 0.207 -- 

SR 551 Dummy for SR 551 road 0.000 1.000 0.114 -- 

UBlvd Dummy for University boulevard road  0.000 1.000 0.068 -- 
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TABLE 4 Panel Mixed Generalized Ordered Probit Fractional Split (PMGOPFS) Model Results 

Variable4 

 

Propensity 
Threshold between 

20-25mph and 25-30 

Threshold between 

25-30mph and 30-

35mph 

Threshold between 

30-35mph and 35-

40mph 

Threshold between 

35-40mph and 

>40mph 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant -1.577 (-15.019) -0.292 (-12.696) -0.262 (-9.357) -0.382 (-14.148) -0.290 (-6.170) 

Roadway Characteristics  

Length 0.558 (10.528) ---
5
 --- --- --- 

Lane drop -0.307 (-9.303) --- --- --- --- 

Standard deviation (at hourly resolution) 

 

0.248 (12.400)     

Average inside shoulder width 0.171 (6.577) --- --- --- --- 

Average sidewalk width -0.109 (-1.946) --- --- --- --- 

Intersection density -0.097 (-4.042) --- --- --- --- 

Average bike lane length -0.232 (-2.729) --- --- --- 0.448 (3.420) 

Traffic Characteristic  

AADT -0.094 (-5.529) --- --- --- --- 

Land Use Characteristic 

Industrial area -2.216 (-2.353) --- --- 2.009 (2.438) --- 

Shopping Center --- --- 0.148 (3.364) --- --- 

Environmental Characteristic 

Average Precipitation -0.522 (-2.212) --- --- 0.748 (2.588) --- 

Road Specific Characteristics 

Lake -0.608 (-13.511) --- --- 0.551 (5.989) --- 

SR 15 -0.252 (-5.250) --- 0.485 (5.052) --- --- 

                                                 
4 Please see Table 3 for variable definitions and units 
5 ---= attribute insignificant at 90% significance level 
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SR 426 -0.048 (-1.778) --- --- 0.401 (10.025) --- 

UBlvd 0.106 (2.865) --- --- --- --- 

SR 551 --- -0.073 (-6.636) --- --- --- 

Unobserved Effects 

Roadway specific unobserved effect 0.045 (1.957) 

Day specific unobserved effect 0.153 (3.477) 

Direction specific unobserved effect 0.020 (1.767) 

Log-Likelihood at convergence (N=11040): -17388.07, AIC:34836.14, BIC: 35066.48 
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APPENDIX  

TABLE A.1 Ordered Probit Fractional Split (OPFS) Model Results 

Variable6 

(N=11040) 

 

Propensity 
Threshold between 

20-25mph and 25-30 

Threshold between 

25-30mph and 30-

35mph 

Threshold between 

30-35mph and 35-

40mph 

Threshold between 

35-40mph and 

>40mph 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant -1.638 (-38.571) -0.902 (-21.500) -0.149 (-3.554) 0.596 (14.178) 1.352 (31.343) 

Roadway Characteristics  

Length 0.559 (28.265) --- --- --- --- 

Lane drop -0.211 (-10.704) --- --- --- --- 

Average inside shoulder width 0.180 (21.715) --- --- --- --- 

Average sidewalk width -0.101 (-5.640) --- --- --- --- 

Intersection density -0.099 (-15.094) --- --- --- --- 

Average bike lane length -0.263 (-5.012) --- --- --- -- 

Traffic Characteristic  

AADT -0.101 (-15.685) --- --- --- -- 

Land Use Characteristic 

Industrial area -2.657 (-10.170) --- --- --- --- 

Environmental Characteristic 

Average Precipitation -0.610 (-2.292) --- --- --- --- 

Road Specific Characteristics 

Lake -0.835 (-9.354) --- --- --- --- 

SR 15 -0.307 (-6.766) --- --- --- --- 

SR 426 -0.234 (-9.294) --- --- --- --- 

UBlvd 0.111 (2.927) --- --- --- --- 

Log-Likelihood at convergence (N=11040): -17518.38, AIC:35072.76, BIC: 35210.97 

 

                                                 
6 Please see Table 3 for variable definitions and units 
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TABLE A.2 Generalized Ordered Probit Fractional Split (GOPFS) Model Results 

Variable 

(N=11040)7 

 

Propensity 
Threshold between 

20-25mph and 25-30 

Threshold between 

25-30mph and 30-

35mph 

Threshold between 

30-35mph and 35-

40mph 

Threshold between 

35-40mph and 

>40mph 

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) Estimate (t-stat) 

Constant -1.578 (-37.571) -0.303 (-27.545) -0.268 (-26.800) -0.383 (-22.529) -0.292 (-16.222) 

Roadway Characteristics  

Length 0.555 (29.211) --- --- --- --- 

Lane drop -0.217 (-10.850) --- --- --- --- 

Average inside shoulder width 0.173 (21.625) --- --- --- --- 

Average sidewalk width -0.103 (-5.722) --- --- --- --- 

Intersection density -0.101 (-16.833) --- --- --- --- 

Average bike lane length -0.175 (-3.241) --- --- --- 0.449 (4.582) 

Traffic Characteristic  

AADT -0.074 (-12.333) --- --- --- --- 

Land Use Characteristic 

Industrial area -1.409 (-5.337) --- --- 2.016 (4.978) --- 

Shopping Center --- --- 0.147 (13.364) --- --- 

Environmental Characteristic 

Average Precipitation -1.163 (-3.969) --- --- 0.745 (1.725) --- 

Road Specific Characteristics 

Lake -0.778 (-17.289) --- --- 0.515 (5.598) --- 

SR 15 -0.234 (-4.875) --- 0.487 (5.096) --- --- 

SR 426 -0.179 (-6.630) --- --- 0.363 (9.075) --- 

UBlvd 0.087 (-2.351) --- --- --- --- 

SR 551 --- -0.303 (-27.545) --- --- --- 

Log-Likelihood at convergence (N=11040): -17437.79, AIC:34927.58, BIC: 35127.21 

 

                                                 
7 Please see Table 3 for variable definitions and units 
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TABLE A.3 Elasticity Analysis at Road Level (All 3 Models) 

Road Variable Model Speed<=20mph 
Speed >20mph 

and <=25mph 

Speed >25mph 

and <=30mph 

Speed >30mph 

and <=35mph 

Speed >35mph 

and <=40mph 
Speed >40mph  

Lake 

Length (+10%) 

OPFS* -2.422% -0.677% 1.348% 3.834% 6.588% 9.810% 

GOPFS -2.400% -0.722% 1.263% 4.162% 8.146% 11.573% 

PMGOPFS -2.449% -0.849% 0.948% 3.600% 7.314% 10.651% 

Intersection 

density (+10%) 

OPFS 2.344% -0.384% -1.448% -2.306% -3.077% -3.909% 

GOPFS 2.414% -0.378% -1.404% -2.497% -3.630% -4.576% 

PMGOPFS 2.423% -0.204% -1.173% -2.188% -3.235% -4.135% 

Average length 

of bike lane 

(+10%) 

OPFS 0.001% 0.000% 0.000% -0.002% -0.004% -0.007% 

GOPFS 0.001% 0.000% 0.000% -0.001% -0.001% -0.011% 

PMGOPFS 0.001% 0.001% 0.000% -0.001% -0.002% -0.011% 

AADT (+10%) 

OPFS 3.099% 0.375% -1.865% -4.238% -6.586% -9.069% 

GOPFS 2.823% 0.386% -1.591% -4.164% -7.308% -9.733% 

PMGOPFS 2.943% 0.597% -1.285% -3.759% -6.817% -9.223% 

Proportion of 

industrial Area 

(+10%) 

OPFS 0.240% -0.017% -0.147% -0.266% -0.377% -0.494% 

GOPFS 0.194% -0.011% -0.112% -0.182% -0.750% -0.962% 

PMGOPFS 0.207% 0.005% -0.097% -0.165% -0.733% -0.952% 

SR 15 

Length (+10%) 

OPFS -1.532% 0.003% 1.194% 2.506% 3.912% 5.556% 

GOPFS -1.548% -0.077% 1.448% 3.038% 4.175% 5.476% 

PMGOPFS -1.433% 0.097% 1.491% 2.875% 3.894% 5.139% 

Intersection 

density (+10%) 

OPFS 3.659% -0.396% -2.885% -5.279% -7.564% -9.975% 

GOPFS 3.848% -0.282% -3.292% -6.825% -9.122% -11.644% 

PMGOPFS 3.326% -0.483% -3.236% -6.509% -8.628% -10.949% 

Average length 

of bike lane 

(+10%) 

OPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

GOPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

PMGOPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

AADT (+10%) 

OPFS 4.464% -0.399% -3.522% -6.591% -9.563% -12.712% 

GOPFS 4.155% -0.186% -3.668% -7.403% -9.844% -12.486% 

PMGOPFS 3.848% -0.530% -3.818% -7.324% -9.648% -12.250% 

Proportion of 

industrial Area 

(+10%) 

OPFS 0.125% -0.004% -0.098% -0.198% -0.302% -0.422% 

GOPFS 0.103% 0.001% -0.093% -0.153% -0.454% -0.598% 

PMGOPFS 0.098% -0.007% -0.100% -0.158% -0.454% -0.592% 
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SR 426 

Length (+10%) 

OPFS -3.604% -1.384% 0.416% 2.744% 6.369% 14.662% 

GOPFS -3.606% -1.479% 0.461% 3.055% 8.728% 14.836% 

PMGOPFS -3.555% -1.572% 0.186% 2.687% 8.053% 13.571% 

Intersection 

density (+10%) 

OPFS 3.421% 0.591% -1.088% -2.476% -3.562% -4.580% 

GOPFS 3.603% 0.711% -1.116% -2.617% -3.874% -5.228% 

PMGOPFS 3.394% 0.840% -0.834% -2.303% -3.594% -4.908% 

Average length 

of bike lane 

(+10%) 

OPFS 0.232% 0.109% 0.003% -0.165% -0.502% -1.390% 

GOPFS 0.151% 0.077% -0.003% -0.128% -0.113% -2.845% 

PMGOPFS 0.199% 0.111% 0.008% -0.152% -0.240% -2.677% 

AADT (+10%) 

OPFS 6.972% 1.489% -1.953% -5.161% -8.275% -12.270% 

GOPFS 6.477% 1.582% -1.822% -4.884% -8.552% -12.314% 

PMGOPFS 6.483% 1.877% -1.379% -4.521% -8.316% -12.039% 

Proportion of 

industrial Area 

(+10%) 

OPFS 0.869% 0.149% -0.260% -0.616% -0.945% -1.342% 

GOPFS 0.717% 0.148% -0.198% -0.318% -1.606% -2.284% 

PMGOPFS 0.732% 0.200% -0.160% -0.294% -1.602% -2.264% 

University 

Blvd 

Length (+10%) 

OPFS -3.987% -2.201% -0.516% 1.401% 3.554% 6.490% 

GOPFS -3.834% -2.119% -0.445% 1.404% 3.304% 6.085% 

PMGOPFS -3.833% -2.092% -0.424% 1.391% 3.243% 5.958% 

Intersection 

density (+10%) 

OPFS 4.526% 1.920% 0.119% -1.536% -3.061% -4.741% 

GOPFS 4.588% 1.842% 0.028% -1.557% -2.988% -4.666% 

PMGOPFS 4.310% 1.745% 0.036% -1.462% -2.819% -4.429% 

Average length 

of bike lane 

(+10%) 

OPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

GOPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

PMGOPFS 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

AADT (+10%) 

OPFS 7.253% 3.566% 0.538% -2.554% -5.673% -9.425% 

GOPFS 6.415% 3.114% 0.383% -2.283% -4.905% -8.309% 

PMGOPFS 6.488% 3.123% 0.370% -2.293% -4.901% -8.302% 

Proportion of 

industrial Area 

(+10%) 

OPFS 1.766% 0.529% -0.123% -0.563% -0.828% -0.973% 

GOPFS 1.340% 0.407% -0.129% -0.196% -0.987% -0.967% 

PMGOPFS 1.373% 0.413% -0.135% -0.207% -0.993% -0.973% 

* Note: OPFS= Ordered probit fractional split model, GOPFS= Generalized ordered probit fractional split model,  

             PMGOPFS= Panel mixed generalized ordered probit fractional split model. 

 


