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ABSTRACT 

In recent years, joint count and fractional split model structure-based approaches have emerged as 

a credible alternative for multivariate crash frequency dependent variables. However, current 

approaches in the fractional split theme have a limitation. The fractional split component of these 

frameworks allocates proportion to all crash configurations. It is possible that across spatial units, 

several crash configurations might have a large share of zero crashes. In the traditional multivariate 

context, in the presence of high share of zeros, researchers employ zero-inflated or hurdle variants 

such as zero inflated negative binomial model. The current research effort improves the fractional 

split based multivariate model systems with an explicit consideration for the potential presence of 

zeros by crash configuration. The newly included binary component can be employed to identify 

safer (or riskier) zones by crash configuration. The framework also accommodates for unobserved 

heterogeneity across the components of the model system. The proposed model structure is 

estimated using zonal data from the Central Florida region for 2016. The model considered 6 crash 

types including rear-end, angle, sideswipe, single-vehicle, multi-vehicle (3 or more), and non-

motorized crashes. The model estimation is conducted using an exhaustive set of independent 

variables. The model results clearly highlight the importance of accommodating zero crashes by 

crash type in the analysis. The model exercise is further augmented with a validation analysis. 

 

Keywords: Negative binomial- multinomial fractional split model, binary logit model, zero crash 

region, crash type, and crash count.  
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INTRODUCTION 

In the United States, after a period of sustained reduction in fatalities, the number of motor vehicle 

crash associated fatalities have started to increase in recent years. The number of roadway crash 

fatalities amounted to more than 40,000 in 2021; an increase of 10.5% from the previous year (1). 

Given the significant societal, emotional, and economic impacts of roadway crashes, it is important 

that evidence-based solutions are applied to reduce the number of crashes and their potential 

consequences. A major tool employed to advance road safety is the development of data-driven 

econometric models to identify factors affecting crash occurrence and crash consequence. Crash 

frequency analysis has been employed widely for macroscopic and microscopic safety analysis. 

Macroscopic analysis examines factors influencing crash frequency at an aggregate spatial 

resolution (such as TAZ, roadway segment, and intersection). In microscopic analysis, frequency 

models are developed at the facility resolution (such as segments and roadways).  Macroscopic 

analysis is useful for identifying long-term planning and safety issues influencing crash 

occurrence. The current paper contributes to furthering crash frequency literature by developing 

improved methodology for macroscopic crash frequency analysis.  

Macroscopic crash frequency analysis has been widely applied in safety literature to  

quantify the impact of various spatially aggregated independent variables on crash occurrence (2–

7). Initial approaches employed Poisson and Negative Binomial (NB) models for analyzing total 

crash frequency. In recent years, other advanced approaches such as  generalized linear model 

hurdle models (Poisson and NB), geographic weighted regression models (Poisson and NB) and 

hierarchical Bayesian spatiotemporal random parameters approach) and machine learning (such as 

random forest) tools have been employed (2, 5, 8–12). However, as recognized in different studies 

modeling total crashes as a homogenous dependent variable can neglect the different impacts of 

independent variables on different crash configurations (by crash type and/or severity)(see (13, 

14) for details). Hence, the total crash dependent variable was partitioned into crash frequency by 

crash configuration (type or severity). The partitioning results in multiple dependent variables for 

each spatial unit. The suite of univariate models is not appropriate for modeling multiple dependent 

variables by spatial unit. Hence, researchers employed multivariate models that recognize the 

presence of common unobserved factors that influence spatial unit specific dependent variables. 

The approaches employed can be categorized into two groups: first, model systems employing 

multivariate versions of univariate models such as multivariate Poisson-lognormal model (15, 16), 

random parameter multivariate NB model (17), copula-based multivariate NB model (17, 18), 

copula-based random parameter multivariate NB model (17), multivariate multiple risk source 

regression model (19), and Bayesian multivariate hierarchical spatial joint model (20). Second, 

model systems employing variants of the joint count and fractional split framework such as 

negative binomial-ordered probit fractional split model (21–23), negative binomial-ordered logit 

fractional split model (24), and negative binomial-multinomial logit fractional split model (25–

27).  

The two methods offer different approaches to model multivariate crash frequency 

variables. The traditional multivariate approach employs a count propensity for each crash variable 

and the interaction among dependent variables is accommodated through interaction of common 

unobserved factors. On the other hand, as discussed in our earlier work (17, 26), the fractional split 

model structure employs a total crash model and a fractional split model that determines the 

proportion of crashes by configuration. The approach allows for independent variables to directly 

interact across crash configurations. Thus, it provides a potentially distinct alternative model 

structure for crash frequency models by crash configuration.  
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Current Study 

Earlier research has established that fractional split model systems perform as well (if not better) 

than the traditional multivariate approaches with a parsimonious specification (see (15, 26) for 

examples of comparison efforts). However, earlier approaches in the fractional split theme have a 

limitation. As it is employed right now, the fractional split component allocates proportion to all 

crash configurations. It is possible that across spatial units, several crash configurations might have 

large share of zero crashes. In the traditional multivariate context, when the presence of such zeros 

needs to be accommodated, researchers employ zero-inflated or hurdle variants such as zero 

inflated negative binomial model (10, 28–32), zero inflated Poisson model (10, 11, 32), 

spatiotemporal random effect zero inflated negative binomial model (33), multivariate random 

parameters zero-inflated negative binomial regression model (34), zero inflated hierarchical 

ordered probit model (35), and hurdle negative binomial model (36–39).  

The current research effort furthers safety methodology by improving the fractional split 

based multivariate model systems with an explicit consideration for the potential presence of zeros 

by crash configuration. The modified framework with an additional component for zero crashes 

results in three components: (1) total crash NB component, (2) binary logit (BL) component by 

crash configuration and (3) multinomial logit fractional split (MNLFS) crash proportion 

component. The binary component can be employed to identify safer (or riskier) zones by crash 

configuration. The framework also accommodates for unobserved heterogeneity across the three 

components of the model system. The study contributes to empirical literature on safety by 

estimating the proposed model system for 6 crash types including rear-end, angle, sideswipe, 

single-vehicle, multi-vehicle (3 or more), and non-motorized crashes. The model estimation is 

conducted using a host of independent variables including roadway-, traffic-, land use, built 

environment, and socio-demographic characteristics, which will contribute to evaluate their impact 

on crash frequency for different collision types. The model results clearly highlight the importance 

of accommodating zero crashes by crash type in the analysis. The model exercise is augmented 

with a validation analysis. 

 

METHODOLOGY 

The Joint model developed in the study consist of three components: 1) a NB model employed to 

analyze the total number of crashes,2) a binary logit model for determining zones with zero or 

non-zero crashes by crash type, (3) a MNLFS model employed to study the proportion of crashes 

by crash types for non-zero crash frequency zones. For ease of presentation, we discuss the 

framework by component.  

 

Count Component 

Let us assume 𝑖(𝑖 = 1,2,3, … , 𝑁) as the index for TAZ, 𝑗 as an index representing each crash type 

and 𝐾 represents total crashes at TAZ level, therefore, 𝑗 = 1,2,3, … , 𝐽; 𝑗𝜖𝐾 𝑎𝑛𝑑 𝐾 = ∑ 𝑗𝐽
𝑗=1 . In our 

study, the values of the 𝑗 were assigned as follows: rear-end (𝑗 = 1), angle (𝑗 = 2), sideswipe 

(𝑗 = 3), single-vehicle crash (𝑗 = 4), multiple-vehicle crash (𝑗 = 5), and non-motorized crash 

(𝑗 = 6).Using these notations, the equation for estimating total crash counts at different crash level 

using NB is as follows: 

𝑃(𝑐𝑖𝐾) =  
Γ (𝑐𝑖𝐾 +

1
𝛼𝐾

)

Γ(𝑐𝑖𝐾 + 1)Γ (
1

𝛼𝐾
)

(
1

1 + 𝛼𝐾𝜇𝑖𝐾
)

1
𝛼𝐾

(1 −
1

1 + 𝛼𝜇𝑖𝐾
)

𝑐𝑖𝐾

… … … … … … … … … … … … . (1) 
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where, 𝑐𝑖𝐾 be the index for total crash counts occurring over a period of time in TAZ 𝑖. 𝑃(𝑐𝑖𝐾) is 

the probability that TAZ 𝑖 has 𝑐𝑖𝐾 number of crashes. Γ(∙) is the gamma function, 𝛼𝐾 is NB over 

dispersion parameter and 𝜇𝑖𝐾 is the expected number of crashes occurring in TAZ 𝑖 over a given 

time period. We can express 𝜇𝑖𝐾 as a function of explanatory variables by using a log-link function 

as follows: 

𝜇𝑖𝐾 = 𝐸(𝑐𝑖𝐾|𝒙𝑖) = 𝑒𝑥𝑝((𝜽 + 𝝔𝑖)𝒙𝑖 + 𝜙𝑖 + 𝜓𝑖𝑗) … … … … … … … … … … … … … … … … … … … . (2) 

where, 𝒙𝑖 is a vector of explanatory variables (including the constant) associated with TAZ 𝑖. 𝜽 is 

a vector of coefficients to be estimated. 𝝔𝑖 is a vector of unobserved factors on crash count 

propensity for TAZ 𝑖 and its associated zonal characteristics assumed to be a realization from 

standard normal distribution: 𝝔𝑖~𝑁(0, 𝝇2). 𝜙𝑖 is a gamma distributed error term with mean 1 and 

variance 𝛼𝐾. 𝜓𝑖𝑗 captures unobserved factors that simultaneously impact total number of crashes 

and proportion of crashes by crash types for TAZ 𝑖. 
 

Binary Logit Component 

For the binary logit framework, the probability expression is as follows: 

𝛬[𝑦𝑖𝑗] = { 

𝜋𝑖𝑗 𝑦𝑖𝑗 > 0

1 − 𝜋𝑖𝑗 𝑦𝑖𝑗 = 0
… … … … … … … … … … … … … … … … … … … … … … … … … … . (3) 

where 𝛬[𝑦𝑖𝑗] represents the probability that TAZ 𝑖 will have the corresponding crash type 𝑗 or not 

(yes/no) and it will be determined based on 𝜋𝑖𝑗 . 𝑦𝑖𝑗 is the observed fraction of crashes by crash 

type 𝑗 (𝑗 = 6)  in TAZ 𝑖. With this notation, the equation for 𝜋𝑖𝑗  is as follows: 

𝜋𝑖𝑗 =
𝑒𝑥𝑝(𝛾𝜼𝑖𝑗)

1 + 𝑒𝑥𝑝(𝛾𝜼𝑖𝑗)
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . (4) 

where, 𝜼𝑖𝑗 is a vector of attributes (including the constant) and 𝛾 is a conformable parameter vector 

to be estimated. 

 

Fractional Split Component 

The modeling of crash proportions by crash types is undertaken using the MNLFS model. We 

defined the proportion of crash types in TAZs as the dependent variable in MNLFS framework. In 

estimating the model, we assume that the sum of the proportions across a TAZ is equal to unity 

and each proportion of crash types in traffic crashes ranges between zero and one. Therefore 

assuming 𝑦𝑖𝑗 be the fraction of crashes by crash type 𝑗 (𝑗 = 6)  in TAZ. 

0 ≤ 𝑦𝑖𝑗 ≤ 1, ∑ 𝑦𝑖𝑗 = 1
𝐽

𝑗=1
… … … … … … … … … … … … … … … … … … … … … … … … … … . (5) 

Let the fraction 𝑦𝑖𝑗 be a function of a vector 𝑑𝑖𝑗 of relevant explanatory variables associated 

with attributes of TAZ 𝑖. 

𝐸[𝑦𝑖𝑗|𝑑𝑖𝑗] =  𝐺𝑗(∙) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . (6) 

0 < 𝐺𝑗(∙) < 1, ∑ 𝐺𝑗(∙) = 1
𝐽

𝑗=1
… … … … … … … … … … … … … … … … … … … … … … … … … … . . (7) 

where, 𝐺𝑗(∙) is a predetermined function. The properties specified in equation 7 for 𝐺𝑗(∙) warrant 

that the predicted fractional crash types will range between 0 and 1 and will add up to 1 for each 

TAZ. In this study, a MNL functional form for 𝐺𝑗 in the fractional split model of equation 7. Then 

equation 7 is rewritten as: 
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𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗) = 𝐺𝑗(∙) =
exp( 𝑣𝑖𝑗 ∗ yij)

∑ exp( 𝑣𝑖𝑗 ∗ yij)
𝐽
𝑗=1

, 𝑗 = 1,2,3, … . ., … … … … … … … … … … … … … . (8) 

where, 𝑣𝑖𝑗 is the propensity for crash type 𝑗 in TAZ 𝑖 and it is specified as the following linear 

form: 

  𝑣𝑖𝑗 =  (𝜷𝒋 + 𝝆𝒊𝒋)𝑑𝑖𝑗 + 𝜉𝑖𝑗 ± 𝜓𝑖𝑗 … … … … … … … … … … … … … … … … … … … … … … … … … … (9) 

where, 𝒅𝑖𝑗 is a vector of attributes, 𝜷𝑗 is the corresponding vector of coefficients to be estimated 

for crash type 𝑗. 𝝆𝑖𝑗 is a vector of unobserved factors assumed to be a realization from standard 

normal distribution: 𝝆~𝑁(0, 𝝂𝑗
2). 𝜉𝑖𝑗 is the random component assumed to follow a Gumbel type-

1 distribution. 𝜓𝑖𝑗 term generates the correlation between equations for total number of crashes 

and crash proportions by crash types. The ± sign in front of 𝜓𝑖𝑗 in equation 9 indicates that the 

correlation in unobserved zonal factors between total crashes and various crash types may be 

positive or negative. The positive sign implies that TAZ with higher number of total crashes is 

more likely to experience higher number of crashes for the corresponding crash types, impacted 

by the same unobserved factor. Alternatively, the negative sign reveals an opposing trend, that is 

TAZ with higher number of crashes will have lower risk for the corresponding crash types. The 

appropriate sing (+/-) will be determined based on the model fit. Further, we recognize the 

correlation can vary across TAZs and hence, we parameterize it as a function of observed 

attributes:  

𝜓𝑖𝑗 = 𝜣𝒋𝒕𝑖𝐽 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … (10) 

where, 𝒕𝑖𝑗 is a vector of exogenous variables, 𝜣𝒋 is a vector of unknown parameters to be estimated 

(including a constant). 

 

Model Estimation 

In examining the model structure of total crash count and proportion of crashes by crash types, it 

is necessary to specify the structure for the unobserved vectors 𝝇, 𝝆 and 𝜣 represented by ℧. In 

this paper, we assume that these elements are drawn from independent realization from normal 

population: ℧~𝑁(0, (𝝇𝟐, 𝝂𝑗
2, ℵ𝑗

2)). Thus, conditional on ℧, the likelihood function for the joint 

probability can be expressed as: 

ℒ𝑖 = ∫ 𝑃(𝑐𝑖𝐾) × ∏ (𝐸(𝑦𝑖𝑗|𝑑𝑖𝑗))
𝜛𝑖𝑦𝑖𝑗

𝐽

𝑗=1℧

𝑓(℧)𝑑𝛺 … … … … … … … … … … … … … … … … … … (11) 

where, 𝜛𝑖 is a dummy with 𝜛𝑖 = 1 if TAZ 𝑖 has at least one crash over the study period and 0 

otherwise. 𝑦𝑖𝑗 is the proportion of crashes in crash type category 𝑗. Finally, the log-likelihood 

function is:    

ℒℒ = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . (12) 

All the parameters in the model are estimated by maximizing the logarithmic function ℒℒ 

presented in equation 12. The parameters to be estimated in the joint model are: 𝜽, 𝛼𝐾 , 𝜷𝒋, 𝝂𝑗 and 

ℵ𝒋.To estimate the proposed joint models, we apply Quasi-Monte Carlo simulation techniques 

based on the scrambled Halton sequence to approximate this integral in the likelihood function 

and maximize the logarithm of the resulting simulated likelihood function across individuals (see 

(40–42) for examples of Quasi-Monte Carlo approaches in literature). The model estimation 

routine is coded in GAUSS Matrix Programming software (43). 
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DATA PREPARATION 

 

Data Source 

The data for our analysis was drawn from the Central Florida region for the year 2016. The data 

were obtained from Florida Department of Transportation (FDOT), Crash Analysis Reporting 

System and Signal Four Analytics databases. The dataset contains the records for 114,458 

motorized and 3,413 non-motorized crashes. Central Florida region consists of 4747 TAZs, and 

all the crash records were assigned to the corresponding TAZ using the Geographic Information 

System (GIS). Motorized crashes were classified into 5 categories based on crash type as single 

vehicle crashes, two vehicle crashes including rear end, angle, sideswipe, single-vehicle, and 

multiple-vehicle (involving 3 or more vehicles) crash. 

 

Dependent Variable Distribution 

A summary of the dependent variable distribution is presented in Figure 1. The figure reports two 

measures, the number of TAZs with zero crashes by crash type and the mean and standard 

deviation of crashes by crash type (for all TAZs). From the numbers, it is evident that a large share 

of TAZs have zero crashes. Among the crash types, non-motorized crashes have the highest share 

of zero crashes while rear-end crashes have the lowest share of zero crashes. These descriptive 

statistics clearly indicate the value of a model framework that can accommodate for zero crash 

state by crash type. Among the crash types, rear end crashes have the highest mean for crashes 

(10.95) while and non-motorized crashes have the smallest mean (0.72). From the 4,747 TAZs, 

3,815 (80%) were used for model estimation, and the rest 932 (20%) TAZs were set aside for 

validation. 

 

 
Figure 1 Distribution of Crashes at Different Crash Types 
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Independent Variables 

The crash data were augmented with a host of independent variables from the following categories: 

a) roadway characteristics, b) traffic characteristics, c) land-use characteristics, d) built 

environment characteristics, and e) socio-demographic characteristics. The data were compiled 

from multiple sources including FDOT Transportation Statistics Division, US Census Bureau, 

American Community Survey and Florida Geographic Data Library databases. The independent 

variables were aggregated at corresponding TAZ resolution using GIS. A summary statistic (mean 

and standard deviation) and variable definitions are presented in Table 1. In the model estimation 

process several functional forms, such as – Z-scores, and proportion of variable categories were 

employed, and retained in the final specification based on their statistically significance (at 90% 

significance level). 

 

TABLE 1 Variable Summary Statistics (Zonal level) 

Variables Variable description 

Number of zones = 

4,747 

Mean 
Standard 

Deviation 

Proportion of rear end 

crash 

Total number of rear end crashes/ Total 

crashes in the corresponding TAZ 
0.33 0.24 

Proportion of angle 

crash 

Total number of angle crashes/ Total 

crashes in the corresponding TAZ 
0.15 0.17 

Proportion of sideswipe 

crash 

Total number of sideswipe crashes/ 

Total crashes in the corresponding TAZ 
0.08 0.11 

Proportion of single-

vehicle crash 

Total number of single-vehicle crashes/ 

Total crashes in the corresponding TAZ 
0.19 0.23 

Proportion of multiple-

vehicle (3 or more) 

crash 

Total number of multiple-vehicle 

crashes/ Total crashes in the 

corresponding TAZ 

0.13 0.17 

Proportion of non-

motorized crash 

Total number of non-motorized 

crashes/ Total crashes in the 

corresponding TAZ 

0.03 0.08 

Proportion of 1-through 

traffic lane in 

 

Length of 1-through traffic lanes/Total 

roadway length 
0.16 0.23 

No of bike lanes 
Total number of roadways with bike 

lane in a TAZ 
0.49 1.82 

No of intersections Total number of intersections in a TAZ 9.82 10.09 

Proportion of urban road 
Length of urban roadways/ Total 

roadways 
0.81 0.38 

Proportion of arterial 

road 

Length of arterial roadways/ Total 

roadways 
0.38 0.39 

Average inside shoulder 

width 

Average width of inside shoulder in 

feet 
0.29 0.45 

Average outside 

shoulder width 

Average width of outside shoulder in 

feet 
0.96 0.58 
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Average median width Average median width in feet 7.34 10.87 

Average sidewalk width Average sidewalk width in feet 2.09 1.79 

Proportion of road 

length with speed limit 

> 55 mph 

Length of roadways with speed limit > 

55 mph/ Total roadways 
0.09 0.17 

Average speed limit 
Average speed limit of all roadways in 

a TAZ 
36.66 16.48 

Variation of speed limit Variation in speed limit in a TAZ 46.30 78.86 

Truck AADT Annual average daily truck traffic 1071.04 2091.00 

Vehicle miles traveled Ln (Vehicle miles traveled+1) 7.91 3.37 

Proportion of industrial 

area 

Total industrial area/ Total area of the 

corresponding TAZ 
0.02 0.08 

Proportion of public 

area 

Total public (government institution) 

area/ Total area of the corresponding 

TAZ 

0.14 0.20 

Land-use mix 

𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑚𝑖𝑥 =  [
− ∑ (𝑝𝑘 ∗ 𝑙𝑛(𝑝𝑘))𝑘

𝑙𝑛 (𝑁)
] 

where, k is the category of land-use, p is 

the proportion of the developed land 

area for specific land-use category, N is 

the number of land-use categories (13) 

0.37 0.22 

No of entertainment 

establishments 

Total number of entertainment 

establishments in a TAZ 
0.55 1.13 

No of restaurants Total number of restaurants in a TAZ 1.66 3.57 

No of shopping center 
Total number of shopping centers in a 

TAZ 
2.43 5.50 

Proportion of 

individuals aged more 

than 65 years old 

Number of individuals aged more than 

65 years old / Total population of the 

corresponding TAZ 

0.21 0.11 

Proportion of African 

Americans 

Number of African Americans / Total 

population of the corresponding TAZ 
0.14 0.16 

Proportion of 

commuters use walking 

as the principal mode 

Number of commuters using walking 

as the main mode/ Total number of 

commuters at the corresponding TAZ 

0.02 0.03 

 

EMPIRICAL ANALYSIS 

 

Model Specification and Goodness of Fit 

This study involves estimation of two model structures: 1) NB-MNLFS model without a 

component for zero crash state (Model-1), and 2) proposed model system with a binary logit model 
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for considering zero crash state (Model-2). The model estimation process involved the following 

steps. First, an NB model was developed for the crash count estimation. Second, six binary logit 

models were developed to recognize the non-zero crash regions for six specific crash types. Third, 

two different MNLFS models were estimated considering zero crashes and without considering 

zero crashes. The models were compared based on log-likelihood (LL) and Bayesian Information 

Criterion (BIC) values. The LL (BIC) values are as follows: (a) Model 1: -20,455.2 (41,355.8) and 

(b) Model 2: -19,292.2 (39,029.6). From these values, it is clear that the newly proposed Model 2 

provides the best fit. The estimation results of the best fitted model are described. 

 

Joint NB-MNL Fractional Split Model 

Table 2 presents the estimated coefficients of the Joint NB-MNL fractional split model. The second 

column of the model provides the significant parameters of the NB model and the 3rd to 8th column 

provides significant parameters (at 90% significance level) of the MNL fractional split model.  

 

NB Component 

Crash frequency for different TAZs was estimated using the NB component of the joint 

framework. A positive (negative) coefficient variable indicates that, an increase in the variable will 

increase (decrease) crash frequency. The estimation results are discussed by variable categories as 

follows: 

 

Roadway Characteristics 

Several roadway characteristics were tested in our model. Among them proportion of arterial 

roads, proportion of urban roadways, number of intersections, and average inside shoulder width 

were found to offer significant impact on crash frequency. The positive coefficient of the 

proportion of arterial roads indicates an increased number of crashes with increasing proportion of 

arterial roads at the TAZ level (see (17, 26) for similar results). Proportion of urban roadways also 

provided similar impact(see (26) for similar result). Further, as expected, an increased number of 

intersections are found to increase the total number of crashes. Earlier research also reported 

similar impacts of the intersection variable (13, 24, 26). Usually, intersections are likely to 

experience more crashes due to vehicle maneuvers through several conflict points. Finally, average 

inside shoulder width was found to have a positive impact on crash frequency (similar result was 

reported at (26). 

 

Traffic Characteristics 

In terms of traffic characteristics, only Vehicle Miles Traveled (VMT) was found to have 

significant impact on crash frequency. The positive sign indicates that increased traffic volume is 

more likely to increase the total number of crashes in TAZs ( see (44) for similar result). 

 

Land-use Characteristics 

Several land-use variables were tested in our model to capture the impact of surrounding land-use 

characteristics on crash frequency. Among them, the proportion of industrial and public areas are 

found to provide significant effect. However, they offered contradictory impact on crash 

frequency. The result indicates that TAZs with larger proportion of industrial area are more likely 

to experience more crashes, while TAZs with a larger proportion of public areas are found to have 

a lower number of crashes. Further, the random parameter for the proportion of public area in the 

crash count NB model was found to be statistically significant. The distributional parameter 
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indicates that the overall impact of the corresponding variable on crash frequency is likely to be 

negative (83.4%). 

 

Built-environment Characteristics 

Only one variable - the number of entertainment establishments - was found to be statistically 

significant affecting crash frequency. The positive sign of the variable indicates that TAZs with a 

higher number of entertainment establishments are likely to have higher number of crashes. 

 

Socio-demographic Characteristics 

In terms of socio-demographic attributes, only two variables - proportion of African American 

individuals and proportion of people over 65 years - were found to have significant impact on 

crash frequency. The proportion of African American was found to offer positive effect, whereas 

the proportion of people over 65 years old provided a negative impact (see (45) for similar results).  

 

Binary Logit Component 

In this study, we employed binary logit model of each crash type for identifying the TAZs with 

non-zero crash regions for that corresponding type. The estimation results with significant 

coefficients (at 90% significance level) of the six binary logit models were shown in Table 3 and 

are discussed together by different variable categories. 

 

Roadway Characteristics 

Various roadway characteristics were found to be significant in each crash type model. Higher 

proportion of arterial roads, urban roadways, road length with 1-through traffic lane, abrupt 

variance in posted speed limit, and increased number of intersections in the TAZs were found to 

increase the likelihood of rear-end crash occurrence in a zone (similar result was found in (46)). 

In terms of angle crashes proportion of arterial roads and signal intensity offered a positive impact; 

however, proportion of road length with speed limit more than 55 mph provided a negative 

association. This result is indicative of the availability of well-maintained facilities on the 

roadways with higher speed limit. Sideswipe crashes are more likely to occur in TAZs with higher 

proportion of arterial roads, urban roads, increased number of bike lanes and increased signal 

intensity. The proportion of road length with speed limit > 55mph, and proportion of road length 

with 1-through traffic lane were found to offer positive impact on single-vehicle crash. This result 

is intuitive because, 1-through traffic lane provides confined spaces for vehicle mobility resulting 

in higher number of single-vehicle crashes. On the other hand, TAZ level multiple-vehicle crashes 

are positively associated with the proportion of arterial roads, and the proportion of road length 

with 1-through traffic lane; however, proportion of road length with speed limit > 55 mph offered 

a negative effect. In terms of non-motorized crashes in a TAZ, several variables from this category 

were found to be significant. Non-motorized crashes are more likely to occur in TAZs with higher 

proportion of arterial roadways, higher proportion of urban roadways, and increased number of 

intersections. On the contrary, higher proportion of road length with speed limit > 55 mph, 

increased number of bike lanes, and larger average sidewalk width decreases the occurrence of 

non-motorized crashes (similar result was reported in (47)). These results indicate that facilities 

for active transportation (walking, biking) such as the presence of bike lanes, and sidewalks offer 

safer environment for bicyclists and pedestrians.
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TABLE 2 Estimation Result of Joint NB-MNLFS Model 

Parameters 

Crash 

frequency 

model 

Rear end 

crash 
Angle crash Sideswipe 

Single 

vehicle 

crash 

Multiple 

vehicle 

crash 

Non-

motorized 

crash 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Intercept 
1.23 

(10.68) 
---- 

-0.10 

(-1.67) 

-0.59 

(-8.69) 

0.14 

(2.23) 

0.16 

(2.03) 

-0.42 

(-4.73) 

Roadway Characteristics 

Proportion of arterial 

road 

0.16 

(3.17) 
---- ---- ---- 

-0.35 

(-8.05) 

-0.11 

(-2.55) 
---- 

Number of intersections 
0.01 

(6.57) 
---- 

0.01 

(6.30) 

-0.01 

(-3.43) 
---- 

0.01 

(3.38) 

0.01 

(2.56) 

Proportion of roadway 

with 1 through traffic 

lane 

---- 
0.32 

(5.53) 
---- ---- ---- ---- ---- 

Proportion of road length 

with speed limit > 55 

mph 

---- ---- 
-0.75 

(-5.70) 
---- 

0.32 

(3.12) 

-0.61 

(-5.43) 

-0.65 

(-3.52) 

ln (Average inside 

shoulder width) 

0.39 

(8.90) 
---- 

-0.23 

(-6.21) 
---- 

-0.18 

(-5.22) 

-0.21 

(-5.56) 

-0.28 

(-5.11) 

ln (Average outside 

shoulder width) 
---- 

-0.19 

(-7.42) 
---- ---- ---- ---- ---- 

Proportion of urban 

roadway 

0.32 

(4.80) 
---- ---- 

-0.20 

(-3.89) 

-0.79 

(-16.07) 

-0.35 

(-6.52) 
---- 

Traffic Characteristics 

ln (Vehicle miles 

travelled) 

0.15 

(14.55) 
---- 

-0.08 

(-9.91) 

-0.04 

(-5.26) 
---- 

-0.09 

(-12.52) 

-0.13 

(-12.89) 

Land-use Characteristics 

Land use mix ---- ---- ---- 
-0.15 

(-2.06) 

-0.28 

(-3.93) 
---- 

-0.39 

(-4.06) 

Proportion of industrial 

area 

0.52 

(1.92) 
---- ---- ---- ---- ---- ---- 

Proportion of public area 
-0.58 

(-5.90) 
---- ---- ---- ---- ---- ---- 
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Standard deviation 
0.60 

(3.42) 
---- ---- ---- ---- ---- ---- 

Built Environment Characteristics 

Z-score: Number of 

entertainment 

establishments 

0.14 

(6.40) 
---- ---- ---- ---- ---- ---- 

Z-score: Number of 

shopping center 
---- 

0.03 

(2.46) 
---- ---- 

-0.06 

(-1.80) 
---- ---- 

Z-score: Number of 

restaurants 
---- ---- 

-0.05 

(-3.70) 

-0.02 

(-1.86) 

-0.20 

(-7.97) 
---- 

-0.20 

(-9.75) 

Socio-demographic Characteristics  

Proportion of African 

American individuals 

0.77 

(6.61) 
---- ---- ---- ---- ---- ---- 

Proportion of people over 

65 years old 

-1.00 

(-4.42) 
---- ---- ---- ---- ---- ---- 

Proportion of commuters 

use walking as principal 

mode of transportation 

---- ---- ---- ---- ---- 
0.91 

(2.80) 

1.01 

(2.77) 

Dispersion parameter 
0.95 

(21.39) 
---- ---- ---- ---- ---- ---- 

Correlations 

Correlation between total 

crash count and crash 

proportions of rear end, 

angle, and sideswipe 

-0.38 

(-10.69) 

-0.38 

(-10.69) 

-0.38 

(-10.69) 

-0.38 

(-10.69) 
---- ---- ---- 

Correlation between total 

crash count and crash 

proportions of single 

vehicle and non-

motorized crashes 

0.03 

(1.92) 
---- ---- ---- 

0.03 

(1.92) 
---- 

0.03 

(1.92) 
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TABLE 3 Estimation of Binary Logit Model 

Parameters 

Rear end Angle Sideswipe 
Single vehicle 

crash 

Multiple 

vehicle crash 

Non-motorized 

crash 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Coefficient 

(T- value) 

Intercept 
-0.45 

(-3.19) 

1.16 

(12.12) 

-0.86 

(-6.93) 

0.36 

(4.43) 

0.66 

(7.25) 

-2.67 

(-16.83) 

Roadway Characteristics 

Proportion of arterial road 
0.22 

(1.76) 

0.32 

(3.13) 

0.42 

(4.24) 
---- 

0.39 

(4.00) 

0.26 

(2.62) 

Proportion of urban roadway 
0.54 

(4.60) 
---- 

0.87 

(8.41) 
---- ---- 

0.92 

(6.93) 

Proportion of road length with speed limit 

> 55 mph 
---- 

-1.19 

(-5.53) 
---- 

1.58 

(5.65) 

-0.62 

(-2.96) 

-1.46 

(-5.03) 

Ln (variance in speed limit) 
0.13 

(4.57) 
---- ---- ---- ---- ---- 

Proportion of road length with 1 through 

traffic lane 

0.71 

(3.67) 
---- ---- 

0.32 

(1.87) 

0.67 

(4.10) 
---- 

Number of intersections 
0.03 

(3.60) 
---- ---- ---- ---- 

0.04 

(8.64) 

Signal intensity ---- 
1.40 

(2.72) 

0.74 

(1.65) 
---- ----  

Number of bike lanes ---- ---- 
0.06 

(2.31) 
---- ---- 

-0.03 

(-1.77) 

Average sidewalk width ---- ---- --- ---- ---- 
-0.11 

(-4.80) 

Traffic Characteristics 

Ln (VMT+1) 
0.17 

(8.43) 
---- ---- ---- ---- 

0.14 

(7.34) 

Proportion of heavy vehicle ---- 
3.90 

(4.74) 

6.94 

(8.59) 

0.13 

(11.10) 

6.25 

(7.20) 
---- 

Built Environment Characteristics 

Z score: Number of shopping center ---- 
3.13 

(16.73) 

1.16 

(8.70) 

0.71 

(5.13) 

1.30 

(8.02) 
---- 

Z score: Number of restaurants 
1.84 

(9.31) 
---- 

0.81 

(7.33) 

0.55 

(4.86) 

0.98 

(6.98) 
---- 
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Traffic Characteristics 

Among traffic characteristics, VMT and proportion of heavy vehicle were found to be significant. 

VMT is associated with higher likelihood of rear-end and non-motorized crashes. This result is 

intuitive because increased traffic volume increases pedestrian and bicycle mobility. An increase 

in non-motorized modes of transportation causes disruption in driving which leads to rear end and 

non-motorized crashes (see (46, 47) for similar result). On the other hand, higher proportion of 

heavy vehicle movement in a TAZ increases the occurrence of angle, sideswipe, single vehicle, 

and multiple vehicle crashes. 

 

Land-use Characteristics 

Several land-use attributes were tested in the binary logit models, but no significant variable was 

found. 

 

Built-environment Characteristics 

Two built-environment attributes, number of shopping centers, and number of restaurants, were 

found to offer significant impact in the binary logit model. It is noticeable that rear end crashes are 

more likely to occur in TAZs with increased number of restaurants. On the other hand, increased 

number of shopping centers increases the likelihood of angle crash.es Both variables - number of 

shopping centers and number of restaurants - are found to have a positive effect on sideswipe, 

single-vehicle, and multiple-vehicle crashes. 

 

Socio-demographic Characteristics 

Several socio-demographic attributes were tested in our models, but no significant variable was 

found. 

 

MNL Fractional Split Component 

The proportion of crashes at different crash types were estimated using MNL fractional split 

model. In our analysis proportion of rear-end crashes was generally considered as the base category 

for this model. A positive (negative) sign of any variable for any crash type indicates a higher 

(lower) likelihood of occurrence of that crash type compared to rear-end crash for a unit increase 

of the corresponding variable. The MNLFS model estimation results are discussed below by 

different variable categories. 

 

Roadway Characteristics 

Various roadway variables were found to be significant in the fractional split model. The 

proportion of arterial roads was found to be negatively associated with single-vehicle and multiple-

vehicle crashes (relative to rear-end crashes). The insignificant impact for other crash categories 

indicates that the proportions of rear-end, angle, sideswipe, and non-motorized crashes are not 

differentially affected by the proportion of arterial roads. An increased number of intersections are 

likely to increase the proportion of angle, multiple-vehicle, and non-motorized crashes (see (26) 

for similar result). At the same time, this variable was found to decrease the proportion of 

sideswipe crashes. Sideswipe, single vehicle, and multiple vehicle crashes are less likely to occur 

in a TAZ with higher proportion of urban roadways. The proportion of roadways with a speed limit 

more than 55 mph were found to be positively associated with single vehicle crashes and 

negatively associated with angle, multiple, and non-motorized crashes (similar result was reported 

in (13)). A higher average inside shoulder width in a zone decreases the proportion of angle, single 
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vehicle, multiple-vehicle, and non-motorized crashes. In terms of outside shoulder, a higher 

average outside shoulder width decreases the proportion of rear-end crashes (see (13) for similar 

result). Finally, the proportion of roadways with 1-through traffic lane is positively associated with 

proportion of rear-end crashes. 

 

Traffic Characteristics 

Only one traffic characteristic – Vehicle Miles Traveled (VMT) – was found to be significant in 

our model. VMT offers a negative association with angle, sideswipe, multiple-vehicle, and non-

motorized crashes. This result is intuitive because increased traffic volume on the roadways 

increases the proportion of rear-end crashes. However, the impact corresponding to the single 

vehicle crashes seems counter intuitive and requires further assessment in future research. 

 

Land-use Characteristics 

Several land-use characteristics were tested in this study. Among them only land-use mix was 

found to offer a significant effect. It is negatively associated with sideswipe, single-vehicle, and 

non-motorized crashes.  

 

Built-environment Characteristics 

Among the built-environment attributes, number of shopping centers and number of restaurants in 

the TAZ were found to offer a significant effect. Number of shopping centers offered a positive 

effect on rear-end crashes; however, it is negatively associated with single-vehicle crashes. The 

number of restaurants variable offered a negative association with angle, sideswipe, single vehicle, 

and non-motorized crashes.  

 

Socio-demographic Characteristics 

Several socio-demographic variables were tested in our model; however only one variable – 

proportion of commuters using walking as the principal mode of transportation – was found to be 

significant. This variable is associated with higher share of multiple-vehicle and non-motorized 

crashes. The result is quite interesting and needs further investigation.  

 

Unobserved Heterogeneity   

The final set of variables in Table 3 represents the unobserved heterogeneity across TAZs. In the 

current study, two common unobserved components were found to be significant. The first 

parameter represents the common correlation between total crash count and crash proportions of 

rear end, angle, and sideswipe. The second unobserved component corresponds to the correlation 

between total crash count and crash proportions of single vehicle and non-motorized crashes. 

These significant parameters lend support to the presence of unobserved factors between total 

crash count and proportions by crash types. 

 

MODEL PREDICTIVE PERFORMANCE 

To illustrate the improved performance of our proposed model, we conducted a prediction exercise 

by total crash count and crash counts by crash type using validation dataset. Specifically, we 

compared the model performance of Model 1 (model that does not explicitly control for zero state) 

and Model 2 (model that explicitly controls for zero state). The predicted log-likelihood values for 

the two model systems are presented in Figure 2.  Figure 2 provides a comparison for total crashes 

and 6 crash types. 
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Figure 2 Log-likelihood Values of Proposed MNL-FS Model Considering Zero Crash Regions and Its Counterpart across 

Different Crash Groups 
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From the figure, we can observe that the proposed model outperforms Model 1 across all 

model systems including the Total crash and crash type frequency models. A closer examination 

reveals a higher improvement in log-likelihood for low crash categories. The differences across 

the model systems are smaller in favor of our proposed model for higher crash categories. Overall, 

the results indicate that accommodating for zero state in crash type frequency considerations 

significantly improves model prediction accuracy for low crash categories while not deteriorating 

performance in the higher crash frequency categories across all crash types. This finding is quite 

encouraging and supports the consideration of the proposed framework for future crash frequency 

analysis.  

 

CONCLUSION 

Earlier research has established that fractional split model systems perform as well (if not better) 

than the traditional multivariate approaches with a parsimonious specification. However, it is 

possible that across spatial units, several crash configurations (crash type/ crash severity) might 

have large share of zero crashes. In the traditional multivariate context, the presence of such zeros 

was accommodated by employing different zero-inflated or hurdle variants. The current research 

effort furthers safety methodology by improving the fractional split based multivariate model 

systems with an explicit consideration for the potential presence of zeros by crash configuration. 

The modified framework with an additional component for zero crashes results in three 

components: (1) total crash NB component, (2) binary logit (BL) component by crash 

configuration and (3) multinomial logit fractional split (MNLFS) crash proportion component. The 

binary component can be employed to identify safer (or riskier) zones by crash configuration. The 

MNLFS model was developed to determine the probability of a particular crash type only if it was 

present in the TAZ. The framework also accommodates for unobserved heterogeneity across the 

three components of the model system. The study contributes to empirical literature on safety by 

estimating the proposed model system for 6 crash types including rear-end, angle, sideswipe, 

single-vehicle, multi-vehicle (3 or more), and non-motorized crashes. The model estimation is 

conducted using a host of independent variables including roadway-, traffic-, land use, built 

environment, and socio-demographic characteristics, which will contribute to evaluate their impact 

on crash frequency for different collision types. 

The data for our analysis was drawn from the 4,747 TAZs in Central Florida region for the 

year 2016. The dataset contains the records for 114,458 motorized and 3,413 non-motorized 

crashes. All the crash records were assigned to the corresponding TAZ using the Geographic 

Information System (GIS). The proposed model system with a binary logit model for considering 

zero crash state (Model 2) was compared with the traditional MNL-FS model (Model 1) based on 

log-likelihood (LL) and Bayesian Information Criterion (BIC) values. The LL (BIC) values are as 

follows: (a) Model 1: -20,455.2 (41,355.8) and (b) Model 2: -19,292.2 (39,029.6). From these 

values, it is clear that the newly proposed Model 2 provided the best fit. To illustrate the improved 

performance of our proposed model, we conducted a prediction exercise by total crash count and 

crash counts by crash type using validation dataset. The results indicate that accommodating for 

zero state in crash type frequency considerations significantly improves model prediction accuracy 

for low crash categories while not deteriorating performance in the higher crash frequency 

categories across all crash types. The reader would note that the degrees of freedom of the proposed 

model and the traditional model were the same in this study. The binary logit component 

development was not included in the joint NB-MNLFS framework. They were developed for 
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future prediction of the occurrence of various crash types in each zone. It would be worthwhile to 

explore a joint model system in future research efforts. 
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