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ABSTRACT 

 

Recent hurricane experiences have created concerns for transportation agencies and policymakers 

to find better evacuation strategies, especially after Hurricane Irma—which forced about 6.5 

million Floridians to evacuate and caused a significant amount of delay due to heavy congestion. 

A major concern for issuing an evacuation order is that it may involve a high number of crashes 

in highways. In this study, we present a matched case-control based approach to understand the 

factors contributing to the increase in the number of crashes during evacuation. We use traffic data 

for a period of 5 to 10 min just before the crash occurred. For each crash observation, traffic data 

are collected from two upstream and two downstream detectors of the crash location. We estimate 

models for three different conditions: regular period, evacuation period, and combining both 

evacuation and regular period data. Model results show that, if there exist a high volume of traffic 

at an upstream station and a high variation of speed at a downstream station, the likelihood of crash 

occurrence increases. Using a panel mixed binary logit model, we also estimate the effect of 

evacuation itself on crash risk and find that, after controlling for traffic characteristics, during 

evacuation the chance of a crash is higher than in a regular period. Our findings have implications 

for evacuation declarations and highlight the need for better traffic management strategies during 

evacuation. Future studies may develop advanced real-time crash prediction models which would 

allow us to deploy proactive countermeasures to reduce crash occurrences during evacuation.  

Keywords: Evacuation, crash, case-control, variation of speed, crash prediction.   

INTRODUCTION 

Evacuation has become a major issue for coastal residents, particularly after recent hurricanes in 

the United States. During Hurricane Irma, about 6.5 million residents of Florida evacuated from 

major cities including Key West, Miami, and Tampa. With only two major interstate highways (I-

75 and I-95) available for leaving Florida, evacuation caused a significant amount of traffic 

congestion and crashes affecting the physical and mental health of evacuees. To deal with this 

condition, advanced traffic management strategies are needed to ensure safety and better mobility 

for the evacuees. Thus, evacuation traffic management has been a major concern for transportation 

agencies and policy makers (House of Representatives Florida, 2018) and several strategies have 

been deployed (Murray-Tuite et al., 2017; Murray-Tuite and Wolshon, 2013). However, these 

strategies seem to be less effective to reduce the number of crashes during an evacuation. For 

instance, during Hurricane Irma’s evacuation, about 221 crashes occurred on I-75 between 

September 7 and September 9, 2017 (close to Irma’s landfall day)—which also caused significant 

delay for the evacuees to reach a safe destination. As such, to ensure a safe and efficient evacuation 

of a large number of people, we need to assess the contributing factors causing an increase in the 

number of crashes during evacuation. 
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Researchers have proposed several state-of-the-art methods to assess crash risks with 

applications of proactive traffic management strategies (e.g., variable speed limit, ramp metering, 

etc.)—to reduce the number of crashes (Hossain et al., 2019b). However, these studies investigated 

only regular traffic conditions where traffic flows show predictable patterns. Although a significant 

number of studies has been made for crash risk analysis and prevention, studies recognizing and 

investigating safety issues associated with evacuations hardly exist. No study has investigated the 

factors which cause an increase in the number of crashes during a hurricane evacuation. In this 

study, we seek to fill this gap by assessing evacuation crash risks based on real-world hurricane 

evacuation data.  

During an evacuation period, traffic flow does not show any regular time-dependent 

variations such as heavy traffic during morning and evening peak hours and weekdays. Instead, it 

shows unpredictable patterns and most of the time major evacuation routes sustain a heavy demand 

all day, causing drastic change in speed and unstable traffic stream. Previous studies have found 

that unstable traffic flow and large variation of traffic speed are two key factors contributing to 

highway crashes (Golob et al., 2004; Tanishita and van Wee, 2017). However, these studies are 

limited to the peak hour traffic analysis where traffic congestion is predictable and sustains over a 

short period of time. Moreover, during hurricane evacuation, a large number of people are forced 

to reach a safe destination as early as possible causing long term congestion; in such conditions 

drivers are more likely to make perception related errors.     

In this study, we seek to understand the impact of hurricane evacuation on crash risks. We 

analyze the relationship between traffic state (speed, occupancy, and volume) variations with the 

likelihood of crash occurrence during hurricane evacuation. We estimate the impact of these 

variables on crash risk in a non-evacuation period and compare the result with an evacuation 

period. To conduct the study, we have collected traffic and crash data for Interstate 75 (I-75) 

between September 3 and September 16, 2017, including the evacuation period of Hurricane Irma, 

from the Regional Integrated Transportation Information System (RITIS) database. We have also 

collected the data for the non-evacuation period from August 1 to August 31, 2017. 

First, we analyze evacuation traffic data, to understand the relationship between traffic state 

variables and crash occurrence at a macroscopic level. Next, we design two case-control studies 

for non-evacuation period and evacuation period data, and for each case, we estimate the impact 

of different contributing factors on crash risk. A case-control analysis using a conditional logistic 

regression model accounts for the confounding variables. However, if we control all the 

confounding variables, we are unable to estimate the impact of evacuation on crash risks. 

Therefore, we also apply a panel mixed binary logistic regression model on the combined dataset 

(includes both evacuation and non-evacuation period data) to estimate the impact of evacuation on 

crash risk.  

This study helps us understand the factors contributing to highway crashes during 

evacuation. This study makes two major contributions to the literature. First, it combines data from 

multiple sources to create a database that helps us gain insights on crash risk of evacuation, using 

real-world hurricane evacuation data. Second, it reports the influence of evacuation on crash and 

finds the relationship between traffic state variables and crash risks. As such, we expect that this 
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study will significantly contribute to the literature and practice by guiding us towards a proactive 

evacuation management system that will reduce traffic-related incidents during evacuation. 

LITERATURE REVIEW 

Ensuring safer mobility during hurricane evacuation has become a major concern for emergency 

managers, especially due to high number of crashes on evacuation routes. Proactive evacuation 

traffic management can overcome this challenge using real-time traffic monitoring and crash risk 

assessment tools. Proactive traffic management largely depends on prior detection of the crash risk 

from real-time data and application of smart strategies (such as variable speed limit and ramp 

metering) to reduce cash occurrences (Abdel-Aty et al., 2010; Hossain et al., 2019a). However, 

recent practices in evacuation traffic management mostly focus on evacuation behavior analysis 

to understand different dimensions of evacuation decisions (Fu and Wilmot, 2004; Moynihan and 

Fonseca, 2016; Murray-Tuite and Wolshon, 2013; Pel et al., 2012; Sadri et al., 2013; Wong et al., 

2018). Although a few studies have explored evacuation traffic behavior, these are limited to 

understanding operational capacity loss of highways during a hurricane evacuation (Dixit and 

Wolshon, 2014; Litman, 2006). Understanding the contributing factors of crashes during 

evacuation is the key to develop crash prediction model for real-time applications. However, there 

is hardly any study that explores such factors for evacuation period; hence we investigate some of 

the existing literature to highlight the concept and challenges in crash risk assessment during non-

evacuation period.  

In traffic safety research, a vast amount of studies have been conducted to understand the 

key factors contributing towards highway crashes such as driver errors, ambient traffic and 

environmental condition, and geometric characteristics of the highway segment (Abdel-aty et al., 

2004). Among them, most of the early studies focus on post-mortem analysis based on historical 

accident data and combine them with driver behavior, traffic characteristics, vehicle and 

environmental conditions (Chu and Zhang, 2018). These studies provide valuable insights 

regarding the contributing factors for real time crash risk prediction. Earlier studies did not 

consider high resolution traffic data for real-time crash risk modeling due to lack of such data.  

In another direction, researchers have been developing real-time crash prediction models 

that estimate crash probability on specific road segments using real-time traffic data (Abdel-aty et 

al., 2004; Abdel-aty and Pande, 2005; Lee et al., 2003; Yu et al., 2014). In recent years, real-time 

crash prediction methods (19, 23–29) have gained attention due to the widespread deployment of 

intelligent transportation systems (ITS) technologies and traffic sensors that allow us to obtain 

large-scale multi-resolution traffic data in real-time (Shi and Abdel-Aty, 2015). Availability of 

these data sources has encouraged researchers to develop real-time crash prediction models for 

proactive traffic management applications. One of the challenges for developing such models 

involves reducing the biases in model results due to the lower number of crash samples 

(imbalanced sample) compared to the total number of available data samples (Basso et al., 2018; 

You et al., 2017). To overcome the issue of imbalanced sampling researchers have adopted a 

matched case-control logistic regression approach (Abdel-aty et al., 2004).  
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For instance, using data from multiple loop detectors and a case-control approach, Abdel-

Aty et al. (Abdel-aty et al., 2004) found that traffic crashes at a particular location can be predicted 

based on variations in occupancy and speed at the upstream and downstream of that location. 

Zheng et al (Zheng et al., 2010) adopted a similar approach to evaluate the impact of traffic 

oscillations on crash risk. Considering only peak hour traffic data to represent the oscillatory traffic 

condition (higher traffic demand), they found that in stop-and-go traffic conditions, traffic speed 

variations significantly increase crash risks. Recent studies have applied synthetic data generation 

techniques such as Adaptive Boosting (AdaBoost)(Ariannezhad et al., 2021), adaptive synthetic 

sampling (ADASYN) (You et al., 2017), synthetic minority over-sampling (SMOTE) (Elamrani 

Abou Elassad et al., 2020) to balance data samples. However, these approaches may not work well 

when modeling for a special condition such as hurricane evacuation where the number of crashes 

are significantly lower (<1%) compared to the available data and we need to control the samples’ 

distribution to create a representative dataset. In such condition, matched case-control sampling 

approach can overcome sampling bias by ensuring specific sampling ratio (crash and non-crash 

samples).  

Although previous studies investigated the relationships between crash occurrence 

probability and real-time traffic conditions immediately preceding a crash, weather condition and 

roadway geometry, these studies only considered regular traffic conditions with predictable traffic 

patterns (e.g., heavy flow during morning and evening peak hours). On the contrary, during 

evacuation, traffic demand is significantly higher than regular peak hour traffic and the demand 

remains same for all the days starting from the declaration of evacuation orders until the landfall 

day. Thus, stop-and-go traffic conditions and speed variations are some of the common features of 

evacuation traffic and may significantly impact crash risks during evacuation.  

Moreover, evacuation itself could induce some impact on crash occurrences, since during 

evacuation people are forced to travel to a safe destination as early as possible and are frustrated 

to drive long hours through heavily congested highways. In such a condition, drivers are more 

likely to make perception related errors. Although we cannot model these factors without 

individual driver level information, we aim to run a macro-level analysis to understand the 

aggregated influence of all the latent factors related to evacuation on crash risk. To the best of our 

knowledge, previous studies did not investigate the impact of evacuation on crash risk. This study 

seeks to fill this significant research gap by assessing the crash risk of evacuation traffic based on 

real-world hurricane evacuation data. Here, we are dealing with a special condition where the 

number of crash cases are very low (< 1%) compared to total data sample over the study period. 

Hence, following previous studies (Abdel-aty et al., 2004; Zheng et al., 2010), we develop a 

matched case-control study to assess the safety impact of different traffic state variables during the 

evacuation period of Hurricane Irma. We have also added an indicator variable to capture the 

impact of evacuation on crash risk.  
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DATA COLLECTION AND ANALYSIS 

Data Description and Preprocessing 

We have collected traffic data from RITIS, for I-75 northbound direction from September 3, 2017 

to September 17, 2017, which includes the evacuation period of Hurricane Irma. To select the 

study location, we have identified major evacuation routes in Florida and observed that a large 

portion of residents living in Florida evacuates to Georgia or adjacent states (Roy and Hasan, 

2019). Hence, we have chosen the segment between Wildwood and Gainesville (about 50 miles 

long), which served a major portion of the evacuation traffic during Hurricane Irma. In addition, 

this segment was highly equipped with MVDS detectors, spaced approximately every 0.5-mile 

interval. Each detector provides speed, volume, and occupancy data at a very high resolution 

(every 20 to 30 seconds).  

We have also collected incident data for the study area from the RITIS incident database. 

The incident data cover four types of incidents: crash, weather-related incident, congestion, and 

other regular events (disabled vehicle, road construction related delay, etc.). We map each crash 

event into its exact location and identify two nearest upstream and downstream MVDS detectors 

(Figure 1 and Figure 2). From these detectors, we extract traffic speed, volume, and occupancy 

data for a period of 30 min just before the crash occurred. For example, if a crash occurred on 2 

pm, we extract the data from 1:30 to 2:00 pm. Since a few detectors were not functioning during 

our study period, we could not obtain traffic data from those detectors. Therefore, we discard the 

crashes corresponding to these detectors. Finally, we create a dataset of 63 crashes during 

evacuation and extract the traffic data from their corresponding upstream and downstream 

detectors from September 4 to September 9, 2017. In figure 3, we demonstrate the workflow 

diagram for data preparation. To compare the traffic characteristics leading to a crash with non-

crash traffic characteristics during the evacuation period, we also extract the traffic data which 

corresponds to a non-crash condition for the same location on the same day. Here, since we are 

interested to understand the influence of evacuation traffic on crashes, we do not have much 

flexibility to collect the data for a non-crash condition on different dates/times during the 

evacuation period. However, during an evacuation period, there is no peaking pattern in traffic 

flow, that means the time of the day or day of the week will not have any significant impact on 

traffic flow characteristics. 



Rahman, Bhowmik, Eluru, and Hasan  

6 
 

 

Figure 1: Crash locations aggregated in an Open Street Map based on the actual coordinates of 

the crashes 

 

 

Figure 2: Layout of the segments and MVDS detectors 
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Figure 3: Workflow diagram for data processing 

When matching non-crash data sample corresponding to each crash, we discard the traffic 

data which belongs to the 30 min period just before the crash occurrence and extract the data before 

that period (see Figure 3). For example, if a crash occurred on 2:00 pm on August 5th, 2017, we 

discard the data from 1:30 to 2:00 pm, and collect the data before 1:30 pm. We have also ensured 

that there is no overlapping between two consecutive crash conditions in case of multiple crashes. 

We assume that when a crash occurs it takes at least one hour for the traffic to reach its normal 

operating condition (Ji et al., 2014; Tirtha et al., 2020; Xie et al., 2015), based on this assumption  

we discard the data points which fell within this time period. For example, if two crashes occurred 

at the same location on 2:00 pm and 5:00 pm on the same day, we just extract the data from 3:00 

pm to 4:30 pm as a non-crash condition. The 1hr time period between 2:00 to 3:00 pm is considered 

as the time required for the traffic to reach normal operating condition; we do not collect any data 

from this time period. We prepare the dataset in such a way that each matched set (i.e., crash (1): 

non-crash (k)) belongs to the evacuation period within the same day. For each matched set, we are 

controlling for the day and location when matching non-crash traffic observations with a crash 
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observation. In our final dataset, we have in total 63 crashes, as well as 63 matched non-crash data 

corresponding to each crash for the evacuation period.  

We have also collected crash data for non-evacuation periods at the same locations. In total, 

we obtain 74 crashes from August 1 to August 31, 2017 and for each of these crashes, we collect 

traffic data for 30 min periods just before the crash occurrence. In this case, it is likely to have 

regular patterns in traffic flow variations (morning and evening peak, weekday, weekend, etc.). 

For matching the traffic data related to a non-crash period with a crash data sample, we have 

accounted for the time-dependent variations of traffic characteristics. While preparing the data 

sample for non-crash case corresponding to each crash, we control the location, time of the day 

(e.g., 3:00 pm to 4:00 pm, 4:00pm to 5:00pm, etc.) and day of the week (e.g., Sunday, Monday 

etc.) (Figure 3). For example, if a crash occurred on 3:50 pm on August 5th, 2017 (Monday) at a 

particular location then we search all the non-crash data for that location and select the data which 

correspond to any Monday of that month and within 3:00 to 4:00 pm. Similar to the previous case, 

we consider pre-crash condition as the 30-min period from the crash occurrence as well as control 

overlapping of multiple pre-crash conditions (i.e., 1 hr. time period after the crash). 

To extract the variables, we divide the sampled traffic data (20 to 30-sec resolution) into 5 

min time interval and aggregated them to estimate average speed (𝑠), standard deviation of speed 

(𝑠𝑠), coefficient of variation of speed (𝑐𝑣𝑠 = (𝑠/𝑠𝑠)), average volume (𝑣) and average 

occupancy (𝑜𝑐) within that 5-min period. For each of the crashes, we have six-time slices 

(1, 2, 3, 4, 5, 6) and each having 5 variables defining traffic states from four detectors (two 

upstream detectors and two downstream detectors). Though we have stated a 30-min period before 

the occurrence of a crash as the pre-crash condition, previous studies have shown that traffic 

characteristics just 5 min before the crash occurred and extending up to 10 min is the most 

significant period for predicting real-time crash risk (Abdel-Aty et al., 2009; Hossain and 

Muromachi, 2012). Based on these finding from previous studies, we use pre-crash condition as a 

5 min time period ending at least 4 min before the recorded time of the crash. The time of the crash 

has been reported in the nearest 1 min and the detector data have been aggregated for 5 min. Thus, 

if a crash had occurred on 6th September 2017 at 4:39 pm then the corresponding pre-crash 

condition will be traffic data from 4:30 pm to 4:35 pm on that day.  
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Figure 4: Traffic state variation during evacuation (a) Traffic Flow (b) Speed 
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Figure 5: Number of crashes during Hurricane Irma Evacuation (Data Source: RITIS) 

Finally, to prepare the dataset for evacuation and non-evacuation period, we form strata of 

𝑁 crashes (i.e., 𝑁 stratum), where each stratum has one crash as a case and corresponding k (i.e., 

k=1, 2, 3, 4, 5 etc.). non-crash samples as control.  For each crash sample, we randomly choose 𝑘 

non crash samples (including the traffic variables) corresponding to that crash sample. We control 

different confounding factors such as location, day of week, hour while matching the crash and 

non-crash samples.  

Descriptive Analysis 

In a normal operating condition, traffic flow shows predictable patterns such as heavy 

demand during peak hours resulting into high traffic flows. However, during an emergency event 

such as a hurricane evacuation, overall traffic condition has to bear severe disruption due to a 

drastic increase in traffic demand. Drastic oscillation and sudden flow breakdown are the common 

characteristics of evacuation traffic. Figure 4(a) shows the distribution of evacuation traffic from 

September 5th, 2017 to September 9th, 2017, which demonstrates traffic flow variation during the 

evacuation period of Hurricane Irma. We observe that during Hurricane Irma’s evacuation, overall 

traffic flow is higher than a regular period and it shows irregular variations which means no 

distinctive morning or evening peak (see appendix A Figure A.1). Consequently, traffic speed 

variation is also irregular and significantly lower than normal operating speed (Figure 4(b)). To 

provide statistical evidence on the difference between evacuation and non- evacuation traffic flow 

pattern, we perform a two tail T test. From the estimation result, we find the T-Stat value as 22.393 

(P-value <0.001) which means that during an evacuation period, traffic flow pattern is significantly 

different compared to a non-evacuation period. 

Moreover, we find that traffic condition starts to deteriorate just after the declaration of 

evacuation order on September 6th, 2017 and remain same till September 9th, 2017. Since, we could 

not extract any traffic data after September 9, 2017, we are unable to show the traffic flow variation 
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after that time period. Hurricane Irma made its landfall at Florida Keys on September 10, 2017 as 

a category 4 storm. Then it passed over several regions of Florida from September 10, 2017 to 

September 12, 2017. It caused significant power outages, in its path, at several regions in Florida. 

It took about a week to restore the overall system. It is likely that the detectors were 

malfunctioning, or the data collection server could not retrieve any information during that period.   

Figure 5 shows the distribution of crashes on different dates during evacuation. There is a 

significant increase in the number of crashes on September 6th, 7th and 8th which include the 

evacuation period after the declaration of the state of emergency. From the figures, we can 

intuitively state that crash occurrence may be associated with traffic flow and speed variation, and 

the chances of crashes increase if there is a large variation in traffic flow and speed.   

METHODOLOGY 

Conditional Logistic Regression 

We design a matched control study for two separate conditions: evacuation period and 

regular period to explore the effects of traffic flow variables on crash risk while controlling for the 

effects of other confounding variables. The differences between crash and non-crash traffic flow 

characteristics within a stratum are used in the model. This is done under the conditional likelihood 

principle of statistical theory. For this part, we adopt the methodological approach followed in Aty 

et al. (Abdel-aty et al., 2004).   

In this study, we have N strata where each stratum (𝑖 = 1 ,2, … … … . . , 𝑁) has one crash 

and k non-crash samples(𝑗 = 1,2, … … … . . , 𝑘). The conditional likelihood for the 𝑖𝑡ℎ stratum is 

the probability of the observed data given the total number of observations and the number of 

crashes observed in the stratum. Let, 𝑃𝑟𝑖(𝑥𝑗𝑖) be the probability that the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ 

stratum is a crash where 𝑥𝑗𝑖 = (𝑥1𝑗𝑖 , 𝑥2𝑗𝑖 , . . . , . . . 𝑥𝑝𝑗𝑖) is the vector of 𝑝 traffic flow 

variables (𝑥1, 𝑥2, . . . , . . . 𝑥𝑝). The probability of a crash can be estimated using a linear in parameter 

logistic regression model, as follows (Abdel-aty et al., 2004): 

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟𝑖(𝑋𝑗𝑖)] = α𝑖 + β1𝑥1𝑗𝑖 + β1𝑥1𝑗𝑖+. . . . . . +β𝑘𝑥𝑝𝑗𝑖                                                          (1) 

The intercept term α captures the effect of controlled variables, which are used to form the 

strata. To consider the stratification impact into the analysis, conditional log-likelihood can be 

constructed. The conditional log-likelihood function is the product of 𝑁 terms, where each term 

defines the conditional probability of a crash occurrence for a given stratum. The conditional 

likelihood function can be expressed as follows (Abdel-aty et al., 2004):  

ℒ(𝛽) = ∏ [1 +  ∑ 𝑒𝑥𝑝 {∑ βu

𝑝

𝑢=1

(𝑥𝑢𝑗𝑖 − 𝑥𝑢0𝑖)}

𝑘

𝑗=1

]

−1
𝑁

𝑖=1

                                                                       (2) 

The likelihood function 𝐿(𝛽) in Equation (2) does not contain the intercept terms 

𝛼1, 𝛼2, … … 𝛼𝑁. Thus, the effects of matching variables cannot be estimated, and hence Equation 1 

cannot be used to estimate crash probabilities. However, the values of the 𝛽 parameters that 

maximize the likelihood function (given by Equation 2) are the same as the estimates of 𝛽 

coefficients in Equation 1. These estimates are log–odds ratios and can be used to approximate the 

relative risk of a crash. They are also known as hazard ratio (ratio of odds for crash occurrence 
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versus not, i.e., odds ratio). The hazard ratio is defined as 𝑒 raised to the power of the value of a 

coefficient (𝛽𝑢). In this study, we use the survival package in R programming (Therneau, 2020) to 

estimate the model parameters.  

Panel Mixed Binary Logit Model 

In this section, we provide the econometric formulation of the proposed Panel mixed binary 

logit model. Let 𝑞(𝑞 = 1,2,3, … … … . . 𝑚; 𝑚 = 6) represents the index for different samples for 

each stratum.  With this notation, the formulation takes the following familiar form: 

𝑣𝑖𝑞
∗ = {(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖} , 𝑣𝑖𝑞 = 1, 𝑖𝑓 𝑣𝑖𝑞

∗  > 0; 𝑣𝑖𝑞 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (3) 

where, 𝑣𝑖𝑞
∗  represents the propensity for crash occurrence for sample 𝑞  in stratum 𝑖;  𝑣𝑖𝑞

∗  𝑖𝑠 1 if 

sample specific to a given stratum indicate crash and 0 other wise. 𝓏𝑖𝑞 is a vector attributes 

associated with sample 𝑞 in stratum 𝑖 and 𝛼 is the vector of corresponding mean effects. 𝛾𝑖𝑞 is a 

vector of unobserved factors affecting probability of crash occurrence. 𝜀𝑖𝑞 is an idiosyncratic error 

term assumed to be identically and independently standard logistic distributed. 𝜚𝑖 is a vector of 

unobserved effects specific to stratum 𝑖. In estimating the model, it is necessary to specify the 

structure for the unobserved vectors 𝛾 𝑎𝑛𝑑  𝜚 represented by Ω. In this paper, it is assumed that 

these elements are drawn from independent normal distribution: Ω~𝑁(0, (𝜋′2
, 𝛷2 )). Thus, the 

equation system for modeling the probability of crash takes the following form (conditional on Ω): 

𝑃𝑖𝑞 = 𝑝((𝑣𝑖𝑞
∗ )|(Ω)) =  

𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖}

1 + 𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖}
                                                               (4) 

The corresponding probability for non-crash is computed as  

𝑄𝑖𝑞 = 1 − 𝑃𝑖𝑞                                                                                                                                                 (5) 

Further, conditional on Ω, the joint probability (for each stratum 𝑖) can be expressed as: 

𝐽𝑃𝑖 = [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑁

𝑖=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 

The unconditional probability will be generated by assuming that the parameters in Ω follow a 

normal distribution (f(.)) and is provided as follows: 

 

𝐽𝑃𝑖 = ∫ [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑁

𝑖=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 𝑓(Ω)𝑑Ω                                                                                   (7) 

 

 As the integral defined in Equation (7) cannot be analytically estimated, we employ the maximum 

simulated estimation approach.  The simulated log-likelihood function is evaluated by replacing 

the integral in Equation (7) with a summation of the function for each realization r (r = 1, 2 … R) 

as defined below:       
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𝐿𝐿 = ∑ 𝐿𝑛(
∑ 𝐽𝑃𝑖

𝑅
𝑟=1

𝑅
)𝑖                                                                    (8) 

The parameters to be estimated in the model are: 𝛼, 𝛾, 𝜚, 𝜋 𝑎𝑛𝑑 𝛷 . To estimate the proposed 

model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled Halton 

sequence with R set to 150  (see (Bhat, 2001; Eluru et al., 2008) for examples of Quasi-Monte 

Carlo approaches in literature). We tested the model with higher R values and found the model 

estimation was stable.  

We estimate this model using GAUSS matrix programming language. We code and optimize the 

log-likelihood function using the non-linear optimization routes within GAUSS. The code we 

employ in this paper has been tested over multiple other research contexts. 

MODEL RESULTS 

In our dataset, for each of the two upstream and two downstream detectors, we have 4 

explanatory variables: 5-min aggregated mean values of occupancy (𝑜𝑐), volume (𝑣), speed (𝑠), 

and standard deviation of speed (𝑠𝑠). So, in total, each dataset contains 16 variables. Previous 

studies (Abdel-aty et al., 2004; Lee et al., 2003) found that the coefficient of variation of speed 

(𝑐𝑣𝑠) better captures the effects of speed and speed variation on crash risk. We combine the 

standard deviation of speed and mean speed to obtain 𝑐𝑣𝑠, which reduces the number of 

explanatory variables into 3. Now, we have 12 variables associated with four detectors for each 

data set. In table 1, we include descriptive statistics for all the variables. 

We estimate the Pearson correlation coefficients between different pairs of variables which 

show that volume is highly correlated with occupancy. Therefore, in our final model, we use either 

occupancy or volume. Moreover, it appears that in some cases, the same variable (e.g., occupancy) 

over different detectors are also correlated with each other (Figure 6). To avoid using highly 

correlated exogeneous variable (i.e. speed, volume etc.) from multiple detectors, we have decided 

to use its value observed in one detector (instead of multiple detectors). We select these variables 

based on the hazard ratio and corresponding t statistics (T-Stat).  
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Figure 6: Pearson correlation values for different pairs of variables  
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TABLE 1:  Descriptive statistics of all variables used in the models.  

Description Min Max Mean Std. Deviation 

Dependent variable 

Crash (1 if crash occurred, 0 otherwise) 0 

 

1 0.167 0.373 

Independent variables 

Upstream detector D1 

Coefficient of variation of speed  0.012 1.409 0.113 0.134 

Occupancy 0.222 44.2 8.657 8.664 

Volume  11 412 181.183 92.823 

Upstream detector D2 

Coefficient of variation of speed  0.005 0.971 0.108 0.139 

Occupancy 0.333 45.967 8.948 8.311 

Volume  15 409 189.158 92.912 

Downstream detector D3 

Coefficient of variation of speed  0.011 0.973 0.107 .119 

Occupancy  0.178 41.756 9.055 8.139 

Volume  15 388 187.854 93.583 

Downstream detector D4 

Coefficient of variation of speed 0.015 2.071 0.134 0.218 

Occupancy  0.133 47.222 8.324 7.943 

Volume  3 423 184.645 95.268 

Evacuation (1 for evacuation period 

data sample, 0 otherwise) 

0 1 0.459 0.499 

 

In our matched case-control sample, we have N strata (depends on the number of crashes. 

e.g., 74 for non-evacuation period) and each stratum has one crash and corresponding k non-

crashes. The number of non-crash samples varies from 1 to k. To fix the number of controls (𝑘) in 

a stratum we run the conditional logistic regression model with different number of control 

samples and check the estimates from each model. We find no significant changes in model 

estimates after k=5, hence, we use 5 control samples in our final matched case control sample (see 

Appendix B for details). We apply this approach for both evacuation and non-evacuation periods 

and obtain similar results.  

First, we run the conditional logistic regression model for evacuation and non-evacuation 

condition to understand the influence of the exogeneous variables on crash risk for different traffic 

demand condition. Table 2 presents the final results for each model. Under regular condition, the 
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final models include two variables:  mean occupancy and coefficient of variation of speed at D1. 

Both variables have positive coefficient with hazard ratio greater than 1 (positive coefficient), 

indicating that the odds of a crash increases with the increase of these variables. Moreover, the 

mean occupancy variable associated with the upstream detector D1 is significant at 95% 

confidence interval while the other variable is significant at a 90% confidence interval. These 

estimates indicate if there is high occupancy of vehicles and large variation of speed at the 

upstream 5 to 10 min before the crash, the chance of a crash occurrence increases. Since the 

coefficient of variation of speed includes the average speed as the denominator, this also indicates 

that the average speed is lower in crash cases.  

Similarly, under an evacuation condition, the final models have two significant variables 

coefficient of variation of speed for the downstream detector D3 and mean volume for the upstream 

detector D1. The value of hazard ratio for both of these variables is greater than 1 (positive 

coefficient), which means if there is a high volume of traffic at upstream and high variation of 

speed at downstream then the chances of crash occurrence is higher. Moreover, we can interpret 

the combined effects of these variables that higher volume of traffic at the upstream location 

coupled with high variation in the speed at the downstream location, increase the likelihood of 

crash occurrence, at a location in between these two zones. The detectors D1 at the upstream zone 

and D3 at the downstream zone are spaced 1 mile (approximately), that means during evacuation 

period this 1-mile segment experience high-speed variation, the high volume of traffic, and lower 

average speed, which indicates potential queue formation under oscillatory speed conditions. 

Consequently, this would have caused a significant increase in the number of crashes within this 

segment.  

TABLE 2: Estimates for the final models for evacuation and regular period (sampling ratio for 

crash and non-crash is 1:5)    

T
ra

ff
ic

 

C
o
n
d
it

io
n
 

Variables 

Conditional Logistic Regression 

Coeff. (Hazard Ratio) T-Stat 
P value 

N
o
n
-

E
v
ac

u
at

io
n
 

 

cvs_D1 2.69 (14.74) 2.76 0.0059 

Occupancy_D1 0.0628 (1.0648) 1.72 0.0858 

E
v
ac

u
at

io
n
 

P
er

io
d
 

 

cvs_D3 1.251 (3.494) 1.96 0.0503 

Volume_D1 0.0052 (1.004) 2.06 0.0397 

 

In our analysis, we combine data from both evacuation and non-evacuation periods. We 

add a dummy indicator variable “𝐸𝑣𝑐” (0 or 1) to separate the evacuation period data from the            
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non-evacuation period data. This variable would indicate the impact of several latent factors 

associated with evacuation on crash risk. We have collected the non-evacuation period crash data 

from a 30-day data sample while for evacuation period we only have 6 days data sample. 

Therefore, before combining the data from two different groups, we need to address this imbalance 

sampling. To account for the imbalance in the sampling process, we assign frequency basis weight 

(Johnson, 2008; Wicklin, 2017) on each crash case. We put a weight of (74/30) 𝑜𝑟 2.5 with non-

evacuation related crash and a weight of  (63/6) 𝑜𝑟 10.5 with evacuation related crash. Which 

means each evacuation related crash has a weight of 10.5/2.5 ≅ 4 while each of the non-

evacuation related crash has a weight of 1. Since we are controlling all the confounding variables, 

we are unable to estimate 𝐸𝑣𝑐  as well as other unobserved factors that affect crash occurrence 

during evacuation. 

Hence, we apply a Panel Mixed Binary Logit (MBL) Model mainly for two reasons. First, 

the model allows us to pool the evacuation and non-evacuation cases in a single model allowing 

us to test if the impact of any variables changes across the two cases. Second, we estimate a panel 

mixed model to recognize the repeated observations of records at the same location. These repeated 

observations are likely to have common unobserved factors that affect crash occurrence. Ignoring 

the presence of such factors when present can result in incorrect or biased estimates. However, we 

implement the model just to understand the impact of evacuation on crash risk. Since matched case 

control sample does not provide true estimate of the constant term, we cannot use such a model 

for crash prediction. We apply similar approach as the conditional logistic regression model to fix 

the number of control samples (k) within each stratum, and employ the same value for k=5, there 

is no significant variations in the model estimates increasing the k value over 5 (see Appendix B). 

Table 3 presents the estimates for Panel Mixed Binary Logit model. From the model 

estimate, we find that the coefficient for the variable coefficient of variation of speed for detector 

D3 (cvs_D3) is positive and significant at 95% confidence interval, that means the chances of crash 

occurrence increases with the increase in speed variations at the downstream location of a roadway 

segment. The coefficient for mean volume (volume_D1) variable is also positive which means 

with increase in traffic volume at the upstream location D1 increases the chances of crash 

occurrence. We also find that the variable 𝐸𝑣𝑐 is highly significant and the coefficient associated 

with this variable is positive indicating that during evacuation the chances of crash occurrence is 

higher than in the non-evacuation period.  

TABLE 3: Model estimates for the combined datasets including both evacuation and non-

evacuation periods (sampling ratio for crash to non-crash events is 1:5) 

Variables Independent LR Mixed LR 

 Coeff. T-Stat P value Coeff. T-Stat P value 

Constant -2.019 -9.500 < 0.001 -2.078 -9.500 < 0.001 

Volume_D1 0.002 2.281 0.0228 0.003 2.281 0.0228 

cvs_D3 1.132 2.233 0.0258 1.271 2.233 0.0258 
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Evacuation 1.029 3.395 0.0007  0.909 3.395 0.0007 

      Standard deviation -- -- -- 0.412 1.760 0.078 

Log-likelihood  -585.141  -581.971  

 

Several unobserved factors can potentially influence crash occurrence process. We tested for the 

influence of roadway specific unobserved factors, temporal unobserved factors, and presence of 

variation among estimated parameters (i.e. random parameters). In our estimation, only one 

random parameter offered statistically significant effect for the Evacuation variable. 

The results highlight how crash propensity varies under evacuation conditions. The mean 

parameter is positive highlighting how the crash risk is generally higher during evacuation relative 

to non-evacuation time periods. However, it is also important to recognize that the increase in 

crash risk is not fixed and exhibits significant heterogeneity. The crash risk based on unobserved 

factors can actually be much higher or lower than the mean effect estimated. The actual probability 

of the crash risk will depend on the specific factors affecting the process. The result also indicates 

that the probability of crash risk is higher than non-evacuation events is 0.9861. The value can be 

computed based on the evacuation mean and standard deviation parameters (normal distribution 

mean of 0.909 and standard deviation of 0.412). 

DISCUSSION AND CONCLUSION  

Key Findings 

This study reveals traffic flow characteristics during hurricane evacuation using real-world data 

from Hurricane Irma’s evacuation period. As expected, it shows that during evacuation overall 

traffic demand is higher than the regular traffic condition which causes irregular variation of traffic 

flow. Consequently, it leads to significant variations in traffic speed, resulting into a stop-and-go 

traffic situation.  

Adopting a case-control analysis, we find that during evacuation the coefficient of variation 

of speed at the downstream station and average occupancy at the upstream station of a crash 

location significantly affect crash likelihood. This implies that higher occupancy rates at upstream 

coupled with high variation in speed at downstream locations, increase the likelihood of crash 

occurrence. Moreover, a panel mixed binary logit model applied over combined (including both 

evacuation and non-evacuation period) data showed that evacuation itself increases the chance of 

a crash occurrence, even after we account for traffic characteristics. This indicates that during 

evacuation the likelihood of crash occurrence increases compared to the regular period. However, 

the effect of evacuation (“evc”) on likelihood of crash occurrence varies across observations with 

a standard deviation of 0.412.  

 

Implication of the Results 

Although the implemented model cannot be directly used for crash prediction, the insights 

from this model will help us develop a crash prediction model which will work for evacuation 
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traffic and consequently proactive measures can be developed to reduce crash risks during an 

emergency situation. Particularly, this method will help identify potential crash locations created 

by prevailing traffic conditions during an evacuation. This can be used to warn evacuee drivers 

about the impending crash risk and enforce them to reduce travel speed to a certain limit.  

The study has further implications for evacuation declarations. Our result shows that high 

volume and occupancy of traffic during evacuation are key contributing factors for crashes. If the 

volume of traffic on the evacuation routes can be reduced, the chances of crash occurrence will 

significantly decrease. However, during evacuation, the traffic demand surge occurs just after the 

declaration of evacuation order due to evacuation of a large number of people at the same time 

from different zones. Therefore, one potential strategy should be to adopt a phased declaration of 

evacuation orders, which require identification of primary risk zones based on spatial and temporal 

information on hurricane landfall. Evacuation orders should be declared in a phased manner 

starting with the primary risk zone and then other zones based on potential hurricane threat.   

The study also show that traffic speed variation causes a significant increase in the number 

of crashes during evacuation, which means we need adequate strategies to reduce the abrupt speed 

variation. Apart from infrastructure-based strategies such as variable speed limit and shoulder use, 

in-vehicle controls using adaptive cruise control and cooperative cruise control, connected vehicles 

and vehicle platooning can play a vital role as well. These are more proactive technologies which 

can assist drivers to maintain a constant cruising speed and gap, reducing overall speed variation. 

These technologies need to be field-tested for evacuation traffic to understand their impact on crash 

risk. In near future, however, microscopic simulation experiments can be conducted to understand 

the impact of different in-vehicle control systems on overall crash reduction during evacuation.  
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APPENDIX A. Comparison between evacuation and non-evacuation period traffic flow. 

 

(a) Traffic flow variation evacuation period 

 

(b) Traffic flow variation non-evacuation period 

Figure A.1: Comparison between evacuation and non-evacuation period traffic flow 

variations 

Evacuation order 

issued from Sept. 

6, 2017. 
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Appendix B. Selection procedure for optimal number of controls (k) for MBL 

The idea is to start with crash sample and corresponding non crash samples ratio as 1:1 and increase 

the ratio gradually (1:3, 1:5, 1:7, 1:9….) until the difference between the coefficients across the 

two successive models does not change significantly. As indicated by the figure, we can clearly 

see the model with samples ratio 1:5 and 1:6 do not depict any significant differences and hence, 

we select the 1:5 ratio for our analysis. We also look at the log-likelihood improvement across the 

models and the results further reinforces our hypothesis of selecting crash sample and non-crash 

samples ratio as the 1:5. The differences across the model coefficients for each variable is 

calculated following the formula stated in (Clogg, 1995).  

 

Figure B.1: Selection of optimal number of controls (𝑘) 
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