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ABSTRACT 1 

Traditionally, in developing non-motorized crash prediction models, safety researchers have 2 

employed land use and urban form variables as surrogate for exposure information (such as 3 

pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models 4 

is affected by the lack of “true” non-motorized exposure data. High-resolution modeling 5 

frameworks such as activity-based or trip-based approach could be pursued for evaluating planning 6 

level non-motorist demand. However, running a travel demand model system to generate demand 7 

inputs for non-motorized safety is cumbersome and resource intensive. The current study is 8 

focused on addressing this drawback by developing an integrated non-motorized demand and crash 9 

prediction framework for mobility and safety analysis. Towards this end, we propose a three-step 10 

framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist 11 

generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for 12 

safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity 13 

proportion models. The framework is developed for the Central Florida region using non-motorist 14 

demand data from National Household Travel Survey (2009) Florida Add-on and non-motorist 15 

crash frequency and severity data from Florida. The applicability of the framework is illustrated 16 

through extensive policy scenario analysis. 17 

 18 

Keywords: Pedestrian; Bicycle; Active travel; Travel Demand; Safety; Negative Binomial; 19 

Fractional Split; Non-motorist   20 
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1. INTRODUCTION 1 

Urban regions in North America are encouraging the adoption of active modes of transportation 2 

by proactively developing infrastructure for non-motorist (pedestrians and bicyclists). However, a 3 

strong impediment to the increasing adoption of active modes of transportation is the safety risk 4 

associated with these modes. The safety risk posed to active transportation users in Florida is 5 

exacerbated compared to active transportation users in the rest of the US. While the national 6 

average for pedestrian (bicyclist) fatalities per 100,000 population is 1.50 (2.35), the corresponding 7 

number for the state of Florida is 2.56 (6.80), which clearly demonstrates the safety risk for non-8 

motorists in Florida (NHTSA, 2015). An important tool to determine the critical factors affecting 9 

the occurrence of pedestrian and bicycle crashes and identifying vulnerable locations is the 10 

application of planning level crash prediction models.  11 

Traditionally, in developing these models, safety researchers have employed land use and 12 

urban form variables as surrogate for exposure information (pedestrian, bicyclist volumes and 13 

vehicular traffic). The quality of these crash prediction models is affected by the lack of “true” 14 

non-motorist exposure data. Moreover, to assess how recent investments in pedestrian and bicycle 15 

transportation infrastructure are influencing their mobility and safety, it is important to develop 16 

demand models. High-resolution modeling frameworks such as activity-based or trip-based 17 

approaches could be pursued for evaluating planning level non-motorist demand. However, the 18 

current state-of-the-art of travel demand models focus on generating vehicular demand (for 19 

automobile and transit). For example, the existing Central Florida Regional Planning Model 20 

(CFRPM) is predominantly focused on auto mode and public transit mode. The modeling approach 21 

does not consider non-motorized modes in detail. Therefore, travel demand matrices of active 22 

transport modes are not often readily available to integrate those in road safety evaluation. Even 23 
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when non-motorist demand is considered, the models employed for these dimensions are rule-1 

based or simplistic models with very few parameters. Further, running a travel demand model 2 

system to generate inputs for non-motorist safety is cumbersome, resource intensive and unlikely 3 

to be implemented. 4 

The current study is focused on addressing this drawback by developing an integrated 5 

demand and crash prediction framework for active modes (pedestrians and bicyclists) with the 6 

objective of using it for mobility and safety analysis. To be sure, analysts often develop non-7 

motorists’ demand model at different local levels, such as: regional level (Porter et al. 1999), 8 

corridor (Matlick 1998) or sub-area level and household/individual level (Pulugurtha and Repaka 9 

2008, Schneider et al. 2009a). Extrapolating planning level non-motorists demand from corridor 10 

level exposure data is not straightforward. An alternative approach to generating planning level 11 

non-motorist demand is to estimate origin-destination (O-D) demand at an aggregate level. The 12 

proposed integrated demand and safety framework would allow us to devise evidence-based policy 13 

implications for improving mobility and safety of pedestrians and bicyclists. In the following 14 

section, non-motorist refers to pedestrians and bicyclists collectively, while non-motorist crash 15 

refers to pedestrian and bicycle involved crashes and finally non-motorist demand refers to 16 

pedestrian and bicycle trips. 17 

 18 

2. BACKGROUND AND CURRENT STUDY IN CONTEXT 19 

 20 

2.1 Earlier Research 21 

As the focus of our research is on examining non-motorist demand and non-motorist safety, we 22 

organize our literature along these two dimensions. 23 
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Non-motorist Demand 1 

Accurate information on non-motorized trip volumes is useful for many studies including public 2 

health studies (Cervero and Duncan 2003), non-motorist safety research (Miranda-Moreno et al. 3 

2011), and active mode infrastructure improvements (Ercolano et al. 1997). Table 1 provides a 4 

summary of the literature on non-motorist demand modeling. The table provides information on 5 

the unit of analysis, the spatial and temporal aggregation level, (non-motorists counts at what 6 

spatial temporal unit), methodological framework employed, and different categories of 7 

exogenous variables considered. The studies presented in Table 1 are categorized along two 8 

streams: (1) studies examining the non-motorist activity only and (2) studies analyzing non-9 

motorist demand and safety simultaneously. 10 

Several observations can be made from Table 1. First, only a small share of studies had 11 

developed an integrated framework for analyzing non-motorist demand and safety. Second, several 12 

spatial units were considered for analyzing the non-motorist demand including segments, 13 

intersections, census block and household amongst which intersections and segments are the most 14 

prevalent one. Third, in terms of temporal aggregation, majority of the earlier research has 15 

examined the non-motorist traffic at a daily level or at an hourly level. Finally, the methodological 16 

frameworks adopted in these studies include Linear regression, Ordinary least square, Negative 17 

binomial, Poisson regression, Hurdle negative binomial, Generalized linear mixed model, Time 18 

series model and Space syntax tool. 19 

With respect to exogenous variables, the overall findings from earlier research effort are 20 

consistent. The various factors identified as influencing non-motorist demand include: (1) socio-21 

demographic characteristics such as population density and household income, (2) land-use 22 

characteristics such as residential land use and land use mix, (3) built environment characteristics 23 
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such as transport accessibility and nearby educational center (such as universities), (4) roadway 1 

characteristics such as sidewalk length and presence of traffic signal, and (5) weather variables 2 

such as average temperature and precipitation rate. 3 

 4 

Non-motorist Safety 5 

There is a vast body of safety literature examining the factors affecting crash occurrence of active 6 

travellers (pedestrians and bicyclists) and the severity of different types of non-motorist crashes 7 

with motorized vehicles. It is beyond the scope of the paper to review all the research on non-8 

motorists safety (see (Eluru et al., 2008; Cottrill and Thakuriah, 2010; Ukkusuri et al., 2012, 2011; 9 

Siddiqui et al., 2012; Abdel-Aty et al., 2013; Wei and Lovegrove, 2013; Yasmin et al., 2014; Lee 10 

et al., 2015; Cai et al., 2016; Nashad et al., 2016) for a detailed review). In general, studies 11 

evaluating non-motorist road user safety do not consider non-motorist exposure in detail. In our 12 

paper, we focus our attention on studies that attempted to incorporate non-motorist exposure in 13 

their studies. 14 

A critical component in the process of analyzing non-motorist safety is the selection of 15 

appropriate exposure measure. A number of research efforts have examined several surrogate 16 

measures to gain a comprehensive understanding of the individual non-motorist crash risk. In 17 

general, total five types of matrices are being developed throughout the years to be used as 18 

exposure for the non-motorist safety analysis (see (Jamali & Wang, 2017) for detail review) 19 

including: (1) area-based approach such as population density (Chakravarthy et al., 2010; Cottrill 20 

& Thakuriah, 2010; Wang et al., 2017; Sze et al., 2019), number of trips (Bouaoun et al., 2015; 21 

Kerr et al., 2013; Bao et al., 2017; Su et al., 2020; Kamel and Sayed, 2020) and vehicular traffic 22 

(C. Lee & Abdel-Aty, 2005; Wier et al., 2009; Wei and Lovegrove, 2013; Kamel and Sayed, 2020); 23 
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(2)  point-based approach such as non-motorist volume (Lee et al., 2019, 2018a;; Guo et al., 2018; 1 

Xie et al., 2018; Ding et al., 2020; Cai et al., 2020; Heydari et al., 2020; Kwayu et al., 2020); (3) 2 

segment-based approach such as pedestrian volume at a segment (Clifton et al., 2008); (4) 3 

distance-based approach such as distance (Molino et al., 2012); and (5) trip-based approach such 4 

as space time prism (Lam et al., 2013, 2014; Yao et al., 2015).  5 

Over the past few years, a significant debate has emerged among the researchers about the 6 

best exposure matrix that can explain the non-motorist crash risk. Several studies investigated the 7 

link between non-motorist trip frequency and collision; and concluded that motorists were more 8 

likely to exhibit safer driving behavior in the presence of higher volumes of pedestrians and 9 

bicyclists (Jacobsen, 2015; Schepers, 2012). However, the relationship is non-linear which implies 10 

that with the increase in number of walking or bicycling trips, the absolute number of non-motorist 11 

involved crashes might increase, but the individual risk of the non-motorist involved in a crash 12 

may decline (for example see (Robinson, 2005; Elvik, 2009; Elvik and Bjørnskau, 2017; Xu et al., 13 

2017). Robinson (2005) investigated the accuracy of the relationship between non-motorist 14 

volume and safety by conducting a comparison study in Australia and found that the risk per 15 

kilometer for cyclist dropped by around 34% when the volume of the cyclists was doubled.  In 16 

recent years, researchers have geared towards trip-based approach where the amount of time or 17 

distance travelled by walking/cycling are used as exposure for examining the non-motorist 18 

involved crash occurrences (Lam et al., 2013, 2014; Yao et al., 2015; Yao & Loo, 2016; Ding et 19 

al., 2020;). Yao et al. (2015) investigated the vehicle-pedestrian crashes and proposed two 20 

approaches for estimating the pedestrian exposure matrix including: (1) Deterministic approach - 21 

space time path (SPT) method using the shortest path algorithm based on the origin-destination of 22 

the trip and (2) Probabilistic approach - potential path tree (PPT) method that considers all the 23 
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possible paths between origin and destination given the link level travel time. The findings from 1 

the study indicate that while both methods are useful for measuring the pedestrian exposure, the 2 

PPT method is more efficient in explaining the manner of vehicle-pedestrian crashes. A relatively 3 

recent study by Ding and colleagues (Ding et al., 2020) considered both bicycle use and time 4 

duration (based on the public bicycle rental system) to serve as proxy for exposure in their bicycle 5 

crash risk model.  The authors concluded that the duration of bicycle serve as a better exposure in 6 

capturing the interactions between bicycles and motor vehicles as indicated by the superior 7 

performance of the model using duration relative to the model considering bicycle frequency as 8 

exposure. Another study by Li et al., 2020 considered three different types of exposure including 9 

trip frequency, distance travelled and number of roads crossed in their pedestrian crash model and 10 

found that model using trip frequency to serve as a surrogate for exposure provided inferior 11 

performance (statistical fit and prediction accuracy) compared to the other models.  12 

 13 

2.2 Current Study  14 

It is evident from the literature review that apart from a handful of studies, non-motorist safety 15 

literature has not adequately addressed the link between non-motorist demand and safety. With 16 

growing emphasis on improving mobility in Florida region there are targeted efforts to enhance 17 

non-motorist mobility. To evaluate the effectiveness of these strategies and to enhance safety, it is 18 

useful to develop methods that accommodate the potential adoption of active modes within the 19 

mobility planning process. Thus, developing an integrated framework of demand and safety would 20 

allow a seamless evaluation of various scenarios that influence mobility and/or safety. In 21 

transportation research, the concept of demand/exposure is defined based on the underlying 22 

research question and the intended use of data. The exposure measures can be identified at 23 
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aggregate or disaggregate level by considering different unit of analysis (as discussed in the earlier 1 

research section for the non-motorists group). The distance travelled and/or time-based exposures, 2 

disaggregate exposure measures, allows us to disaggregate trip over space and time. However, 3 

generating these exposure measures are often computationally burdensome. Therefore, in our 4 

study, we resort to using aggregate level demand in terms of total trip as exposure measure, since 5 

generation of these measures are practice-oriented and less expensive1. Aligned with “trip 6 

generation step” of traditional four-step approach of travel demand modeling, we identify the total 7 

number of non-motorist trips generated and attracted in different zones. Based on these aggregate 8 

counts, we further develop separate models for trip generation and attraction as a function of zonal 9 

level attributes. Finally, we hypothesize that total zonal level exposure (zonal level trip generation 10 

count + zonal level trip attraction count) would influence zonal level safety and, hence, considered 11 

as the exposure matrix in examining zonal-level safety. Thus, in developing an integrated 12 

framework of demand and safety for non-motorist, we propose a three-step approach as follows: 13 

(1) develop aggregate level models for non-motorist trip generation and attraction at a zonal level, 14 

(2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate 15 

level non-motorists crash frequency and crash severity proportion models. 16 

We investigate non-motorists demand at a zonal level by using aggregate trip information 17 

based on origin and destination locations of trips. We develop four models: (1) Pedestrian 18 

generation model – based on zonal level pedestrian origin trip demand, (2) Pedestrian attraction 19 

model – based on zonal level pedestrian destination trip demand, (3) Bicycle generation model – 20 

 
1 Chu (2003) identified that distance-based exposure measure can generate misleading result because of difference in 

travel speed across different trip mode. Using such disaggregate measure in an aggregate level analysis may mislead 

the outcome. Beyond all the arguments on which measure should adopt, there is no clear consensus in existing safety 

literature on which exposure measure is more appropriate and more effective. In fact, different exposure measure can 

lead to different results. In our study design, we hypothesized that the aggregate level demand is surrogate for 

aggregate level safety analysis. It is beyond the scope of this study is to examine which exposure measure – 

aggregate/disaggregate – is better representative of non-motorist exposure matrices.  
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based on zonal level bicycle origin trip demand, (4) Bicycle attraction model – based on zonal 1 

level bicycle destination trip demand. In the second step, predicted origin and destination trip 2 

counts are used from the exposure models to generate different zonal level trip exposure matrices 3 

for both pedestrian and bicycle modes to be considered as non-motorists exposure measures for 4 

safety evaluation. Finally, in the third step, we estimate non-motorist safety models by employing 5 

predicted exposure matrices, generated from second step, along with other zonal attributes. 6 

Specifically, we estimate four different aggregate level safety models: (1) zonal-level crash count 7 

model for examining pedestrian-motor vehicle crash occurrences, (2) zonal-level crash count 8 

model for examining bicycle-motor vehicle crash occurrences (3) zonal-level crash severity model 9 

for examining pedestrian crash injury severity by proportions and (4) zonal-level crash severity 10 

model for examining bicycle crash injury severity by proportions. These models are estimated for 11 

the Central Florida Region as a function of zonal level sociodemographic characteristics, 12 

roadway/traffic attributes, built environment and land-use characteristics. The applicability of the 13 

framework is illustrated through extensive policy scenario analysis.  14 

The rest of the paper is organized as follows: The description of the data and exogenous 15 

variables adopted in the analysis are describes in Section 3. Model estimation results are presented 16 

in Section 4. Section 5 presents the policy scenario analysis and finally, conclusions are presented 17 

in section 6.  18 

 19 

3. DATA 20 

 21 
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3.1 Study Area and Data Sources 1 

The study area is the Central Florida Region defined by Central Florida Regional Planning Model 2 

version 6.0 (CFRPM 6.0) which includes 4,747 traffic analysis zones (TAZ). Data for developing 3 

non-motorist exposure models are sourced from 2009 National Household Travel Survey (NHTS) 4 

Add-on database provided by the Florida Department of Transportation (FDOT) that allowed us 5 

to geo-tag trips recorded in the Central Florida region. In the dataset, there were 2,749 households, 6 

5,090 individuals and 22,359 trips. Among these trips, walk and bike trip shares were 8.8% and 7 

1.3%, respectively. Data for the non-motorist safety analysis is compiled from FDOT Crash 8 

Analysis Reporting System (CARS) and Signal Four Analytics (S4A) databases. CARS and S4A 9 

are long and short forms of crash reports in the State of Florida, respectively. The long form crash 10 

report includes higher injury severity level or crash related to criminal activities (such as hit-and-11 

run or Driving Under Influence). The Short Form Report is used to report all other types of traffic 12 

crashes. Crash data records from short and long form databases are compiled to generate complete 13 

information on road crashes and hence are used for the purpose of analysis in the current study 14 

context. For this study, we have examined the pedestrian and bicycle crash events for the year 15 

2010 to incorporate the exposure measures in terms of non-motorist safety2. For the year 2010, 16 

1,474 and 1,012 crashes were reported involving pedestrian and bicycle, respectively. 17 

 18 

3.2 Data Description 19 

The dependent variables for the exposure models are daily zonal origin trip count and daily zonal 20 

destination trip count for pedestrians and bicyclists. We incorporate “person-trip weight” – as 21 

 
2 The proposed integrated demand-safety approach can be employed by using recent data, if both demand and safety 

data are available to maintain the same base year condition. In our study, we had access to the demand data for the 

year 2009 from NHTS data. Therefore, for safety models, we have selected year 2010 to reflect the base year demand 

condition from 2009 NHTS data. 
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defined in NHTS database – to extrapolate the non-motorized trips to represent number of trips for 1 

the zones in the Central Florida region. Locations of zones with pedestrian and bicycle O-D 2 

demand are shown in Figure 2. With respect to safety component, the geo-coded crash data 3 

involving non-motorists are aggregated at the level of TAZ for the year 2010. These crashes are 4 

further classified by crash severity outcomes (property damage only (PDO), possible injury, non-5 

incapacitating, incapacitating injury and fatal crashes) at the zonal level. Locations of zones with 6 

pedestrian and bicycle crashes (total crashes and by crashes by different injury severity levels) are 7 

shown in Figures 3 and 4, respectively.  The corresponding variables by proportion (number of 8 

specific severity level/total number of all crashes) include: (1) proportion of PDO crashes, (2) 9 

proportion of possible injury crashes, (3) proportion of non-incapacitating injury crashes, (4) 10 

proportion of incapacitating injury crashes and (5) proportion of fatal crashes. The dependent 11 

variables and sample size for both exposure and safety models are presented in Table 2. The crash 12 

proportion models for pedestrian and bicyclists are estimated only for zones with non-zero crashes. 13 

In addition to the different zonal level dependent variables, the explanatory attributes 14 

considered in the empirical study are also aggregated at the TAZ level accordingly. For the 15 

empirical analysis, the selected explanatory variables can be grouped into four broad categories: 16 

sociodemographic characteristics, roadway and traffic attributes, built environment characteristics 17 

and land use characteristics. To ensure that the exogenous variables considered reflect the analysis 18 

year trend, we generate these variables using data from 2010. Table 3 offers a summary of the 19 

sample characteristics of the exogenous variables and the definition of variables considered for 20 

final model estimation along with the zonal minimum, maximum and average.  21 

 22 
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4. EMPIRICAL ANALYSIS 1 

The model estimation results for different components are discussed separately. The final 2 

specifications of the models were based on removing the statistically insignificant variables in a 3 

systematic process based on statistical significance (90% confidence level). In estimating the 4 

models, several functional forms and variable specifications are explored. The functional form that 5 

provided the best result is used for the final model specifications as presented in Table 3. 6 

 7 

4.1 Exposure Models 8 

In estimating aggregate level exposure models, the non-motorist trip demand is represented as total 9 

number of non-motorist trips originated from and destined to at a zonal resolution. Thus, the 10 

demands are non-negative integer values. Naturally, these integer values can be examined by 11 

employing count regression approaches, such as the Poisson and Negative Binomial (NB) 12 

regression approaches. However, for the zonal-level non-motorist trip counts, more than 84% and 13 

96% TAZs have zero pedestrian and bicycle trip records, respectively. The traditional count 14 

models (Poisson and NB models) do not account for such over-representation of zero observations 15 

in the data. The Hurdle model is typically used in the presence of such excess zeroes. Cameron 16 

and Trivedi (1998) presented these models as finite mixture models with a degenerate distribution 17 

and probability mass concentrated at zeroes. The Hurdle approach is generally used for modeling 18 

excess sampling zeroes. It is interpreted as a two-part model: the first part is a binary response 19 

structure modeling the probability of crossing the hurdle of zeroes for the response and the second 20 

part is a zero-truncated formulation modeled in the form of standard count models (Poisson or 21 

NB). Therefore, to accommodate for the preponderance of zero trip counts, exposure models are 22 

developed using Hurdle Negative Binomial (HNB) regression approach (see Cai et al. 2016 for 23 



14 

 

methodological framework)3. Table 4 presents the estimation results of the exposure models: 1 

pedestrian trip generation (2nd and 3rd columns), pedestrian trip attraction (4th and 5th columns), 2 

bicycle trip generation (6th and 7th columns), and bicycle trip attraction (8th and 9th columns) 3 

models. In the Hurdle model, the positive (negative) coefficient in the probabilistic component 4 

corresponds to increased (decreased) propensity of non-zero trip events. The positive (negative) 5 

coefficient in the count component of the Hurdle model corresponds to increased (decreased) non-6 

zero trip count events. Pedestrian and bicycle trip demand models are discussed in the following 7 

sections. 8 

 9 

Pedestrian Trip Demand Models 10 

Probabilistic Component: In the probabilistic components, land-use mix, urban area and number 11 

of households are found to be significant in both pedestrian trip generation and attraction models. 12 

As these variables serve as surrogates for pedestrian activity, it is expected that TAZs with higher 13 

levels of these variables are likely to be associated with pedestrian trip generation and attraction. 14 

 15 

Count Component: With respect to sociodemographic characteristics, from Table 4 we can see that 16 

proportion of 65+ aged population is positively associated with pedestrian trip generation. Zones 17 

with higher average speed limit on roadways are likely to generate less pedestrian trip origin 18 

demand (Pulugurtha and Repaka, 2008). Annual average daily traffic (AADT) is negatively 19 

associated with both pedestrian demand components. Higher proportion of arterial roads in zones 20 

are likely to increase pedestrian activities (Hankey et al., 2012) for generation and attraction. 21 

Higher proportion of roadways with 3 or more lanes are negatively associated with zonal level 22 

 
3 The econometric framework of HNB model is presented in APPENDIX A. 
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pedestrian activities. As expected, zones with higher length of sidewalk are likely to have higher 1 

level of pedestrian activities (Lu et al., 2018). 2 

With respect to built environment, we find that higher number of business centers, 3 

entertainment centers, financial centers, park/recreational centers and shopping centers are 4 

positively associated with pedestrian attraction. On the other hand, higher number of transit hubs 5 

and restaurants are found to be negatively associated with pedestrian destination demand. Land-6 

use characteristics are found to have significant influence in both pedestrian trip generation and 7 

attraction models. Among different land-use categories, industrial area is found to be negatively 8 

associated with pedestrian trip origin and trip destination demands (see (Hankey and Lindsey, 9 

2016; Lu et al., 2018) for similar result). All other land-use categories (recreational, residential, 10 

retail/office and institutional area) are likely to generate higher level of pedestrian activities. 11 

 12 

Bicycle Trip Demand Models 13 

Probabilistic Component: Land-use mix, urban area and number of households are found to be 14 

significant in both bicycle trip generation and attraction models. As these variables serve as 15 

surrogates for bicycle activity, it is expected that TAZs with higher levels of these variables are 16 

likely to be associated with higher levels of bicycle trip generation and attraction. 17 

 18 

Count Component: Proportion of 65+ aged population is negatively associated with bicycle 19 

generation indicating that TAZs with higher number of population aged 65+ have lower bicycle 20 

origin demand (Guo et al., 2007). AADT is negatively associated with bicycle trip generation 21 

component. Furthermore, higher proportion of arterial roads in zones are likely to have higher 22 

bicycle activity (see (Nordback et al., 2017)). Higher proportion of roadway with 3 or more lanes 23 
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are negatively associated with zonal level bicycle activities. Zones with higher sidewalk length are 1 

likely to have higher level of bicycle activities. 2 

Built environment attributes are considered only in bicycle attraction model. The study 3 

finds that higher number of education centers, entertainment centers, park/recreational centers, 4 

restaurants and transit hubs are positively associated with bicycle attractions. On the other hand, 5 

higher number of commercial centers, financial centers and shopping centers impose a negative 6 

effect on bicycle destination demand. Among different land-use categories, industrial, residential 7 

and institutional areas are found to be positively associated with bicycle activities (Tabeshian and 8 

Kattan, 2014). With respect to recreational area, the variable shows positive association in bicycle 9 

generation model but has a negative correlation with bicycle attraction model. On the other hand, 10 

retail/office area is found to be negatively associated with both bicycle trip origin and destination 11 

demand (Chen et al., 2017). 12 

 13 

4.2 Non-motorist Trip Exposure Matrices  14 

In evaluating non-motorist exposure, we also generate different zonal level trip exposure matrices 15 

with the predicted number of daily trip origin (by using trip generation model results) and daily 16 

trip destination (by using trip attraction model results) at zonal level for both pedestrian and bicycle 17 

group of road users. Then, zonal level total trip demand matrices are generated by combining the 18 

trip origin and destination demand matrices across different zones (total trip demand = trip origin 19 

demand + trip destination demand). Thus, the dimensions of the generated total trip demand 20 

matrices are [4747×1] with total trip counts across different rows. The total zonal level trip demand 21 

matrices are generated for pedestrians and bicyclists separately, which is used as exogenous 22 

variables in developing safety models along with other zonal attributes. 23 
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4.3 Safety Models 1 

We estimate two crash count models and two crash proportions by severity models for pedestrians 2 

and bicyclists. Crash count models are developed by using NB model, while the crash proportions 3 

by severity models are developed using Ordered Probit Fractional Split (OPFS) approach (see 4 

Bhowmik et al., 2018; Lee et al., 2018b for unordered fractional split structure and Yasmin and 5 

Eluru 2018; Yasmin et al. 2016; Bhowmik et al., 2019c for ordered fractional split structure). The 6 

NB model, which offers a closed-form expression while relaxing the mean variance equality 7 

constraint of Poisson regression, serves as the workhorse for crash count modeling.  Therefore, 8 

crash count models are developed in this study by using the NB modeling approach4. Crash count 9 

data are often compiled by injury severity outcomes (for example: no injury, minor injury, major 10 

injury and fatal injury crashes). Given the consequences of road traffic crashes and policy 11 

implications, it is a common practice among safety researcher community to develop independent 12 

crash prediction models for different injury severity levels. However, for the same observation 13 

record, it might be beneficial to evaluate the impact of exogenous variables in a framework that 14 

directly relates a single exogenous variable to all severity count variables simultaneously. Such a 15 

framework would allow us to make inferences based on a single model. To that extent, in this 16 

current research effort, as opposed to modeling the number of crashes, we adopt a fractional split 17 

modeling approach to study the fraction of crashes by each severity level. Specifically, we employ 18 

OPFS models for examining pedestrian and bicycle crash proportions by severity levels5. The 19 

estimation results of these models are presented in the following sections. 20 

 21 

 
4 The econometric framework of NB model is presented in APPENDIX B. 
5 The econometric framework of OPFS model is presented in APPENDIX C. 
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Crash Count Models 1 

Table 5 presents the estimation results of the count models. The pedestrian crash count model 2 

results are presented in 2nd and 3rd columns while the bicycle crash count model results are 3 

presented in 4th and 5th columns. 4 

The model results indicate that both pedestrian and bicycle crashes are positively 5 

associated with population density (see (Bhowmik et al., 2019b) for similar results) i.e. zones with 6 

higher population density are likely to experience more pedestrian and bicycle crashes (as 7 

expected). The results, surprisingly, indicate a reduced crash risk for both pedestrian and bicyclists 8 

with higher proportion of population aged 65 and more. One reasonable explanation can be 9 

attributed to the fact that senior people are more experienced which eventually protects them from 10 

colliding with the motor vehicles. Similar results are also observed in the study of Saha et al. 11 

(2018). Several roadway and traffic attributes are found to be significant determinants of non-12 

motorist crashes at the zonal level. The results associated with traffic signal density reveal that an 13 

increase in traffic signal density in a zone increases the likelihood of both pedestrian and bicycle 14 

crashes (Nashad et al., 2016). The result is expected as the density of traffic intersections increases 15 

potential conflicts between vehicles and non-motorist road users are likely to increase. Higher 16 

proportion of arterial roads results in higher pedestrian and bicycle crash risks (Bhowmik et al., 17 

2019a; Nashad et al., 2016). At the same time, higher proportion of local roads is found to have 18 

negative impact of bicycle crash risk. From Table 5, we can see that the likelihood of pedestrian 19 

crash is higher in zones with longer sidewalk length. This is intuitive as sidewalk lengths are 20 

reflections of pedestrian access. For instance, zones with higher length of sidewalk are likely to 21 

have higher level of pedestrian activities (Lu et al., 2018) which eventually results in more 22 

pedestrian crashes (see Cai et al., 2016; Nashad et al; ,2016 for similar results). Similarly, TAZs 23 
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with longer bicycle lane length have an increased likelihood of bicycle crashes. The length of zonal 1 

level bus lane result reveals an increasing likelihood of bicycle crash risk. An increase in zonal 2 

AADT increases the likelihood of both pedestrian and bicycle crashes at the TAZ level. The result 3 

in bicycle crash model suggests that zones with higher truck AADT have a decreased likelihood 4 

of bicycle crashes possibly because bicycling is less prevalent in these zones (see Cai et al., 2016 5 

for similar results). Trucks usually travel on the highways in their majority part of the trips. As a 6 

result, zones with higher truck volume are basically the zones with major highways which explain 7 

the reduced likelihood of bicycle crashes in those zones. 8 

With respect to built environment, the estimation results of pedestrian crash risk model 9 

reveal that higher number of educational centers, transit hubs, restaurants and park/recreational 10 

centers result in higher pedestrian crash risk at zonal level. On the other hand, bicycle crash risk is 11 

positively associated with higher number of commercial centers, financial centers, restaurants and 12 

hospitals. Several land-use characteristics are found to be significant determinants of pedestrian 13 

and bicycle crash risks. Pedestrian and bicycle crash risks increase with increasing urbanized and 14 

residential area. In the bicycle crash risk model, recreational area is found to decrease the 15 

likelihood of zonal level bicycle crash risk. TAZs with higher land use mix increase the propensity 16 

of both pedestrian and bicycle crashes. 17 

The major objective of the current study is to integrate the non-motorist trip exposure as 18 

exogenous variable in developing aggregate level crash risk models. We use total daily trip demand 19 

of pedestrian and bicycle (as explained in section 4.2) as exogenous variables in pedestrian and 20 

bicycle crash risk models, respectively. We consider different functional forms of pedestrian and 21 

bicycle exposure measures in estimating NB models and the functional form that provides the best 22 

fit are considered in the final specifications. With respect to pedestrian crash risk model, pedestrian 23 
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demand per household at a zonal level provides the best data fit and hence is considered in our 1 

final pedestrian crash risk model. From Table 5, we can see that higher number of pedestrians per 2 

household is likely to decrease the risk of pedestrian-motor vehicle crashes (Miranda-Moreno et 3 

al. 2011). The result perhaps is indicating that the motorists are more likely to exhibit safer driving 4 

behavior in the presence of higher volumes of pedestrians (Jacobsen, 2015; Schepers, 2012). With 5 

respect to bicycle crash risk model, bicycle exposure measures are found to have significant impact 6 

on zonal level bicycle-motor vehicle crash risk. The estimation result of exposure measure in 7 

bicycle crash risk model reveal that higher bicyclists trip demand at a zonal level increases the risk 8 

of bicycle crashes. The reader would note that even after controlling for trip exposure variables, 9 

several variables from other variable categories still serve as proxies for exposure.  10 

 11 

Crash Proportions by Severity Models 12 

Table 6 presents the estimation results of the crash proportions by severity models. The pedestrian 13 

crash proportions by severity model results are presented in 2nd and 3rd columns and bicycle crash 14 

proportions by severity model results are presented in 4th and 5th columns of Table 6. These 15 

models are estimated by using OPFS framework. The effects of exogenous variables in model 16 

specifications for both pedestrian and bicycle crash proportions by severity models are discussed 17 

in this section. In OPFS models, the positive (negative) coefficient corresponds to increased 18 

(decreased) proportion for severe injury categories. 19 

With respect to sociodemographic characteristics, the estimates indicate that population 20 

density results in lower likelihood of severe injury proportions for both pedestrian and bicycle 21 

crashes. Proportion of 22-29 years old group of population has negative impact on proportion of 22 

pedestrian crash severity outcomes implying a reduced likelihood of more severe pedestrian 23 
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crashes (Yasmin et al., 2014). Relative to older people, young individuals are more flexible in 1 

handling any sudden activity which in turn protects them from enduring severe injuries (see Saha 2 

et al., 2018 for similar results). The OPFS model results for bicycle reveal a higher proportion of 3 

severe crash outcomes for zones with higher number of flashing beacon signs and higher number 4 

of school signals. As expected, availability of bike lane is found to reduce the likelihood of less 5 

severe bicycle crash proportions. With respect to traffic attributes, higher vehicles miles travelled 6 

(VMT) is positively associated with more severe crash proportions in the model for pedestrians.  7 

The pedestrian severity model reveals that the proportion of severe crashes is lower in 8 

TAZs with higher number of commercial centers (Moudon et al., 2011; Aziz et al., 2013). Higher 9 

number of hospitals is associated with lower likelihood of severe crash proportion in OPFS model 10 

for bicycle crashes. At the same time, the OPFS model results reveal that higher number of park 11 

and recreational centers increases the possibility of higher proportions of severe bicycle crash 12 

outcomes. From both pedestrian and bicycle models, we find that the possibility of more severe 13 

crashes decreases with increasing share of urbanized area of a TAZ (Boufous et al., 2012). 14 

Residential area is found to be a significant determinant of bicycle crash proportion by severity 15 

outcomes. The estimate for residential area has a positive coefficient in bicycle crash severity 16 

model suggesting that proportion of severe bicycle crashes increases with increasing zonal level 17 

residential area. Similar results are also observed in the study of Bhat et al. (2017). 18 

 The non-motorist exposure measures generated (as presented in Section 4.2) are used as 19 

exogenous variables in evaluating zonal level pedestrian and bicycle crash severity proportions. 20 

With respect to, pedestrian crash severity proportion model, higher pedestrian demand per 21 

household at a zonal level decreases the propensity of higher proportion of severe crashes. With 22 

respect to bicycle crash severity proportion model, increase in bicycle trip demand per household 23 
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at a zonal level decreases the risk of higher proportion of severe bicycle-motor vehicle crashes. 1 

The reader would note that the impact of exposure is contrasting in the count and severity models 2 

highlighting how increased exposure is likely to increase the number of crashes but at the same 3 

time contributing to reduced proportion of severe crashes.  4 

 5 

4.4 Predictive Performance Evaluation 6 

In order to demonstrate the predictive performance of the estimated exposure and safety (count 7 

and severity) models, a validation exercise is also carried out. The most common approach of 8 

performing validation exercise for aggregate level model is to evaluate the in-sample predictive 9 

measures. Therefore, to evaluate the predictive performance of the estimated eight models, we 10 

compute the predicted count/proportion events and compared those with the observed values 11 

across different zones. For demand models, to evaluate the in-sample goodness-of-fit measures, 12 

we computed the predicted count events for both zero and non-zero events and compared those 13 

with the observed values. For crash frequency models, we compute mean prediction bias (MPB) 14 

and mean absolute deviation (MAD). For crash proportion models, we compute mean absolute 15 

percentage error (MAPE) and root mean square error (RMSE). These fit measures quantify the 16 

error associated with model predictions and the model with lower fit measures provides better 17 

predictions of the observed data. These measures are computed as: 18 
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where, �̂�
𝑖
 and 𝑦

𝑖
 are the predicted and observed values for event 𝑖 (𝑖 be the index for event 1 

(𝑖 = 1,2,3, … , 𝑁)) and 𝑛 is the number of events. These measures are presented in Table 7. From 2 

Table 7 we can see that the error between observed and predicted values across all events of 3 

different models are quite small (ranging from -6.452% to 0.451%). Hence, we can conclude that 4 

the predictive performance of the estimated models is reasonable for all eight estimated models. 5 

 6 

5. IMPLICATIONS 7 

 8 

5.1 Policy Scenario Analysis 9 

The parameter effects of exogenous variables as presented in Sections 4 do not directly provide 10 

the magnitude of the effects on zonal level non-motorists demand and safety and therefore cannot 11 

be directly employed for policy scenario analysis. For policy scenario analysis, we compute 12 

aggregate level “elasticity effects” of exogenous variables both in the trip demand models and 13 

safety models (see Eluru and Bhat 2007 for a discussion on the methodology for computing 14 

elasticities). We investigate the effect as percentage change in the expected change in zonal 15 

demand, change in zonal crash counts, and change in proportions by severity levels to the change 16 

in exogenous variables for the study region. In the current study context, we perform policy 17 

analysis for different scenario as follows: 18 

 19 
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➢ Scenario 1: 50% reduction in traffic volume within 2 miles buffer area of different central 1 

business district (CBD). 2 

➢ Scenario 2: 30% reduction in traffic volume within 2 miles buffer area of different central 3 

business district (CBD). 4 

➢ Scenario 3: 15% reduction in traffic volume within 4 miles buffer area of different central 5 

business district (CBD). 6 

➢ Scenario 4: 5% reduction in traffic volume within 6 miles buffer area of different central 7 

business district (CBD). 8 

➢ Scenario 5: All zones have sidewalk and the new proposed sidewalk length =9 

 
(𝑇𝐴𝑍 𝑎𝑟𝑒𝑎)0.5

2
 𝑚𝑒𝑡𝑒𝑟. 10 

➢ Scenario 6: 50% increase in existing sidewalk length. 11 

➢ Scenario 7: 15% reduction in zonal average maximum speed. 12 

➢ Scenario 8: 25% reduction in zonal average maximum speed. 13 

➢ Scenario 9: 15% reduction in zonal proportion of 3+lane road. 14 

➢ Scenario 10: 25% reduction in zonal proportion of 3+lane road. 15 

 16 

These scenarios are evaluated for all zones and for both pedestrian and bicycle group of 17 

road users separately. For the buffer area around CBD scenarios, we consider multiple CBDs in 18 

the Central Florida region including Orlando, Sanford, Lakeland, Kissemme, Deland, Ocala, 19 

Melbourne, Palm Bay, Leesburg, Daytona Beach and Port Orange of Central Florida region. The 20 

spatial representation of the considered CBD locations is shown in Figure 1. By performing policy 21 

scenario analysis for exposure and safety components, we ensure that the updated demand matrices 22 

for each scenario is produced and employed in generating exposure measures for non-motorist 23 
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travel as well as vehicular volumes on roadways. With these new exposure measures, the safety 1 

models are used to generate estimates of scenario-based crash and severity proportions and the 2 

change in safety situation. By following the simulation procedure, it is possible to predict demand 3 

matrices for future year and in turn predict safety by incorporating exposure measures. A 4 

comparison across scenarios would allow us to identify beneficial changes to existing 5 

infrastructure for improving non-motorist road user safety. Policy scenario analysis for non-6 

motorist travel demand and safety components are presented in Table 8. We generated elasticity 7 

effects for all severity levels in crash proportion by severity models. However, we present the 8 

elasticity effects only for the highest injury severity category (fatal crash proportions). The 9 

following observations can be made based on the elasticity effects presented in Table 8.  10 

With respect to demand component, we can observe that - First, decreasing vehicular traffic 11 

volume near CBD locations has greater effect on pedestrian demand than bicycle demand. For 12 

both modes, we can observe from the table that higher level of non-motorist activities can be 13 

attained by restricting vehicular traffic; greater the restrictions, higher the level of non-motorist 14 

demand. Second, increasing sidewalk facilities are likely to attract more non-motorists, but for the 15 

hypothetical scenario 5, the demand for pedestrian is likely to get reduced. Third, the reduction in 16 

speed has greater impact on increasing pedestrian demand. However, for bicycle, the variable has 17 

no impact as it was found insignificant in bicycle demand models. Fourth, restriction in number of 18 

traffic lanes are likely to have similar impact and as we can see from Table 8, it increases non-19 

motorists demand. 20 

With respect to crash count component, we can observe that - First, decreasing vehicular 21 

traffic volume near CBD locations are likely to reduce pedestrian crashes with greater impact 22 

within the vicinity of CBD. However, bicycle crashes are likely to increase by about 3%. But 23 
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number of bicycle-motor vehicle crashes are likely to decrease within the vicinity of CBD with 1 

greater reduction in vehicular volume. Second, the hypothetical scenario of sidewalk length shows 2 

that providing walk facilities has the potential to improve pedestrian safety. On the other hand, 3 

bicycle crashes are likely to be adversely affected by increasing sidewalk length – perhaps 4 

indicating greater exposure. Third, reduction in speed and restrictions in traffic lanes decreases 5 

pedestrian crashes. On the other hand, restrictions in traffic lanes increases bicycle crashes by 6 

about 4%.  7 

With respect to crash severity by proportions component, we can observe that - First, non-8 

motorist friendly facilities are likely to reduce proportion of fatal crashes for both pedestrians and 9 

bicyclists. However, the impact on pedestrian mode is much higher than the impact on bicycle 10 

mode. Second, the decrease in pedestrian fatal crash severity proportions are about 1% for increase 11 

in sidewalk length, reducing speed and restricting traffic lanes. The contribution of these measures 12 

on bicycle crash severity are less pronounced relative to pedestrian modes. 13 

It is a well-known fact that non-motorist safety tend to decrease with increasing non-14 

motorist exposure, and only after a certain level of exposure (when traffic become familiar with 15 

higher number of non-motorists), the safety tends to improve. From the policy analysis, we can 16 

see that non-motorist friendly infrastructure has mixed effect on non-motorist safety in current 17 

study context. Therefore, it is imperative that policy implications for improving non-motorist 18 

safety should be identified by considering all known exogenous elements in identifying the 19 

appropriate tools. In general, providing more walking and bicycle friendly facilities are likely to 20 

encourage more people to use non-motorized mode and in targeted zones these measures are likely 21 

to improve non-motorist safety.   22 

 23 
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5.2 Predictions for Future Year 1 

In order to demonstrate the implications from the estimated demand models, we also generate the 2 

predicted demand matrices for the year 2015. Specifically, we have estimated predicted trip origin 3 

demand, predicted trip destination demand and predicted total trip demand for the year 2015. In 4 

generating demand matrices for the year 2015, we consider the increase in weight based on the 5 

change in population at a zonal level. These matrices are presented in Table 9 at the county level 6 

(the matrices are generated at the zonal-level but are shown at the county level for presentation 7 

purposes). From Table 9 we can see that overall bicycle demand has increased from 2010 to 2015, 8 

but total pedestrian demand has decreased over the same period. Similar matrices can be generated 9 

for any other year. These generated demand matrices can be further be used as non-motorist 10 

exposure measures in the safety model predictions for the year 2015. We employ the predicted 11 

results for the year 2015 to plot the spatial distribution of predicted crash counts and predicted 12 

crash counts by severity levels for both non-motorist road user groups. These plots are presented 13 

in Figure 5 (5(a) – 5(c)). From the spatial representation, we can see that high crash risk zones and 14 

zones with higher proportion of severe crashes are dispersed throughout the state.  15 

 16 

6. CONCLUSION 17 

In developing non-motorist crash prediction models safety researchers have employed land use 18 

and urban form variables as surrogate for exposure information (such as pedestrian, bicyclist 19 

volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack 20 

of “true” non-motorist exposure data. Modeling with high-resolution data frameworks such as 21 

activity-based or trip-based approach could be pursued for evaluating planning level non-motorist 22 

demand. However, running a travel demand model system to generate demand inputs for non-23 
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motorist safety evaluation is cumbersome and resource intensive. The current study focused on 1 

addressing this drawback by developing an integrated non-motorist trip demand and crash 2 

prediction framework for mobility and safety analysis. Towards this end, we proposed a three-step 3 

framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist 4 

trip generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for 5 

safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity 6 

proportion models. 7 

The three-step approach entailed estimation of eight different models for pedestrian and 8 

bicyclist road user groups – two trip attraction models, two trip generation models, two crash count 9 

models and two crash proportions by severity models. The model estimation was based on National 10 

Household Travel Survey (NHTS) Florida Add-on and Florida Department of Transportation non-11 

motorist crash data. The integrated framework was employed for policy scenario analysis. The 12 

results provided useful insights on mobility and safety changes associated with these hypothetical 13 

scenarios.  14 

To be sure, our study is not without limitations. We evaluated non-motorist demand by 15 

using NHTS database at an aggregate level which is not readily transferable for developing micro-16 

level model. It might be interesting to generate micro-level trip demand model to identify non-17 

motorist exposure at a corridor level. It might also be useful to conduct a pooled model estimation 18 

with random effects for pedestrians and bicyclists to improve model estimation efficiency. 19 

 20 
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FIGURE 1 Considered Central Business District (CBD) Locations 1 
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 FIGURE 2 Zones with pedestrian and bicycle O-D demand for the year 2009 1 
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FIGURE 3 Pedestrian crashes (total and by different injury severity) for the year 2010 29 
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FIGURE 4 Bicycle crashes (total and by different injury severity) for the year 201029 
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FIGURE 5 (a) Spatial Distribution of Expected Pedestrian and Bicycle Crash Counts for the year 2015 1 



40 

 

 1 

2 

 3 
FIGURE 5 (b) Spatial Distribution of Predicted Fraction of Pedestrian Crashes by Severity levels for the year 2015  4 
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FIGURE 5 (c) Spatial Distribution of Predicted Fraction of Bicycle Crashes by Severity levels for the year 2015  18 
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TABLE 1 Summary of Earlier Research on Non-motorized Demand Model 1 

Studies 
Unit of 

Analysis 

Spatial  

Unit 

Temporal  

unit 

Methodological 

Approach 

Independent  

Variables Considered 
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o
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d
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g

ra
p
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ic
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n
d
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en
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a
st
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ct

u
re

 

W
ea

th
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Traditional Demand Model 

(Pulugurtha and Repaka, 

2008) 
Pedestrian Intersection 1-hour Multiple regression Yes Yes Yes Yes -- 

(Schneider et al., 2009b) Pedestrian Intersection 2-hour Ordinary least square Yes Yes Yes Yes -- 

(Jones et al., 2010) 
Bicycle, 

Pedestrian 

Different 

locations 

1-hour, 2-

hour, daily 
Ordinary least square Yes Yes Yes Yes -- 

(Miranda-Moreno and 

Fernandes, 2011) 
Pedestrian intersections 8-hour 

Log-linear,  

Negative binomial 
Yes Yes Yes Yes Yes 

(Hankey et al., 2012) 
Bicycle, 

Pedestrian 
Street segment 12-hour 

Ordinary least square, 

Negative binomial  
Yes -- Yes Yes Yes 

(Schneider et al., 2012) Pedestrian Intersections Annual Log-linear  -- -- Yes Yes Yes 

(Hewawasam et al., 2014) Pedestrian Household Daily Multivariate regression  Yes Yes -- -- -- 

(Wang et al., 2014) 
Bicycle, 

Pedestrian Multiuse trails Daily 
Linear and negative 

binomial  
Yes -- Yes -- Yes 

(Tabeshian and Kattan, 

2014) 

Bicycle, 

Pedestrian Intersection 2-hour 
Multiple linear and Poisson 

regression  
Yes Yes -- Yes -- 

(Kraemer et al., 2015) Bicycle 
Sites such as 

corridors 
1-hour Multiple linear regression -- -- -- -- Yes 

(Wang et al., 2016) 
Bicycle, 

Pedestrian 
Trail segment Annual Negative binomial Yes -- Yes -- -- 

(Hankey and Lindsey, 

2016) 

Bicycle, 

Pedestrian 
Block level 3-hour  

Stepwise linear regression, 

Reduced form core and 

time average model 

-- Yes -- Yes Yes 
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(Fagnant and Kockelman, 

2016) 
Bicycle 

Segments, 

intersections 
3-hour  

Poisson and Negative 

binomial  
Yes -- -- Yes Yes 

(Clifton et al., 2016) Pedestrian 

Pedestrian and 

traffic analysis 

zones 

Daily Cross classification  Yes -- Yes Yes -- 

(Tian and Ewing, 2017) Pedestrian Household Daily Hurdle negative binomial  Yes -- Yes Yes -- 

(Dhanani et al., 2017) Pedestrian 
hexagons 

(diameter 350 m) 
Six year Poisson regression  -- Yes Yes -- -- 

(Reardon et al., 2017) 
Bicycle, 

Pedestrian 
census blocks Daily Four step model Yes -- Yes Yes -- 

(Fournier et al., 2017) Bicycle 
Continuous 

counters 

Daily, 

monthly, 

annual 

Time series model -- -- -- -- Yes 

(Chen et al., 2017) Bicycle 

Bicycle count 

site buffer  

(0.25,0.5, 1-mile) 

2-hour 
A generalized 

 linear mixed model 
Yes Yes Yes Yes -- 

(Nordback et al., 2017) 
Bicycle, 

Pedestrian Count stations 2-hour 
Survey-based, count based, 

and a sketch planning tool 
Yes -- -- Yes -- 

(Hankey et al., 2017) 
Bicycle, 

Pedestrian 
Block level 3-hour  

Facility demand model, 

 land-use regression  
Yes -- Yes Yes -- 

(Ermagun et al., 2018b) 
Bicycle, 

Pedestrian 
Multiuse trails Daily Negative binomial  -- -- -- -- Yes 

(Ermagun et al., 2018a) 
Bicycle, 

Pedestrian 

Infrared-

inductive loop 

counters 

1-hour, 

Daily 

Generalized linear model 

with gamma distribution 
Yes -- Yes -- Yes 

(Lu et al., 2018) 
Bicycle, 

Pedestrian 

Traffic  

monitoring 

station 

1-hour Stepwise linear regression -- Yes -- Yes -- 

Studies Incorporate Demand in Safety 

(Raford and Ragland, 

2004) 
Pedestrian 

Segment, 

intersection 

2-hour, 

annual 
Space syntax tool Yes -- -- -- -- 

(Miranda-Moreno et al., 

2011) 
Pedestrian Intersection 3-hour 

Log-linear and  

count regression model 
-- -- Yes Yes -- 
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(Strauss et al., 2013) Bicycle Intersection 8-hour 
Bivariate mixed 

Poisson model 
-- Yes Yes Yes Yes 

(Strauss et al., 2015) Bicycle 
Segments, 

Intersection 
8-hour Linear regression model -- -- Yes Yes -- 

(Lee et al., 2018a) 
Bicycle, 

Pedestrian 

American 

household survey 

metropolitan area 

Annual 
Bayesian integrated  

bivariate probit regression 
Yes Yes Yes Yes -- 

(Lee et al., 2019) Pedestrian Intersections Annual 
Generalized linear model, 

Tobit regression 
Yes Yes -- Yes -- 

 1 
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TABLE 2 Sample Statistics of Dependent Variables 1 

EXPOSURE MODELS 

Models 
Dependent 

variables 
Definitions 

Sample 

size 

Zonal (weighted) 

Minimum Maximum Mean 

Pedestrian 

generation 

model 

Pedestrian origin 

trip count 

Total number of daily 

pedestrian trips originated 

in TAZs 

4747 0.00 39232.01 265.45 

Pedestrian 

attraction 

model  

Pedestrian 

destination trip 

count 

Total number of daily 

pedestrian trips destined 

in TAZs 

4747 0.00 39232.01 261.70 

Bicycle 

generation 

model 

Bicycle origin 

trip count 

Total number of bicycle 

trips originated in TAZs 
4747 0.00 7012.43 35.02 

Bicycle 

attraction 

model  

Bicycle 

destination trip 

count 

total number of bicycle 

trips destined in TAZs 
4747 0.00 7012.43 34.94 

SAFETY MODELS 

Models 
Dependent 

variables 
Definitions 

Sample 

size 

Zonal 

Minimum Maximum Mean 

Pedestrian 

crash count 

model 

Pedestrian crash 

counts 

Total number of 

pedestrian crashes in 

TAZs 

4747 0.00 9.00 0.31 

Bicycle 

crash count 

model 

Bicycle crash 

counts 

Total number of bicycle 

crashes in TAZs 
4747 0.00 8.00 0.21 

Pedestrian crash proportion by severity model 

Proportion of PDO 

pedestrian crashes 

Total number of PDO 

pedestrian crashes in 

TAZs/ Total number of 

pedestrian crashes in 

TAZs 

949 

0.00 1.00 0.11 

Proportion of possible 

injury pedestrian crashes 

Total number of possible 

injury pedestrian crashes 

in TAZs/ Total number of 

pedestrian crashes in 

TAZs 

0.00 1.00 0.24 

Proportion of non-

incapacitating injury 

pedestrian crashes 

Total number of non-

incapacitating injury 

pedestrian crashes in 

TAZs/ Total number of 

pedestrian crashes in 

TAZs 

0.00 1.00 0.38 

Proportion of incapacitating 

injury pedestrian crashes  

Total number of 

incapacitating injury 

pedestrian crashes in 

TAZs/ Total number of 

pedestrian crashes in 

TAZs 

0.00 1.00 0.18 

Proportion of fatal 

pedestrian crashes 

Total number of fatal 

pedestrian crashes in 
0.00 1.00 0.09 
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TAZs/ Total number of 

pedestrian crashes in 

TAZs 

Bicycle crash proportion by severity model 

Proportion of PDO bicycle 

crashes 

Total number of PDO 

bicycle crashes in TAZs/ 

Total number of bicycle 

crashes in TAZs 

719 

0.00 1.00 0.12 

Proportion of possible 

injury bicycle crashes 

Total number of possible 

injury bicycle crashes in 

TAZs/ Total number of 

bicycle crashes in TAZs 

0.00 1.00 0.32 

Proportion of non-

incapacitating injury 

bicycle crashes 

Total number of non-

incapacitating injury 

bicycle crashes in TAZs/ 

Total number of bicycle 

crashes in TAZs 

0.00 1.00 0.41 

Proportion of incapacitating 

injury bicycle crashes  

Total number of 

incapacitating injury 

bicycle crashes in TAZs/ 

Total number of bicycle 

crashes in TAZs 

0.00 1.00 0.14 

Proportion of fatal bicycle 

crashes 

Total number of fatal 

bicycle crashes in TAZs/ 

Total number of bicycle 

crashes in TAZs 

0.00 1.00 0.02 

1 



TABLE 3 Summary Characteristics for Exogenous Variables 

Variable names Definitions 
Zonal 

Minimu

m 

Maximu

m 
Mean 

Sociodemographic characteristics 

Population density Total number of Population of TAZ/ Area of TAZ in acre 0.000 19.956 2.366 

Proportion of male population Total number of male of TAZ/ Total number of Population of TAZ 0.000 0.998 0.49 

Proportion of 22-29 aged 

population  

Total number of population who are 22 to 29 years old of TAZ/ Total number of 

Population of TAZ 
0.000 0.397 0.096 

Proportion of people aged 65+ 
Total number of people above 65 years old of TAZ/ Total number of Population 

of TAZ 
0.000 0.899 0.182 

Roadway and traffic attributes 

Traffic signal density Total number of Traffic signal in TAZ 0.000 8.000 0.379 

Proportion of arterial roads Total length of arterial road of TAZ/Total roadway length of TAZ 0.000 1.000 0.459 

Proportion of local roads Total length of local road of TAZ/Total roadway length of TAZ 0.000 1.000 0.040 

Length of sidewalks Total sidewalk length in meter of TAZ 0.000 36.346 0.280 

Length of bike lane Total bike lane length in meter of TAZ 0.000 58.525 0.421 

Availability of bike lane Presence of bike lane in TAZ 0.000 1.000 0.041 

Length of bus lanes Total bus lane length in kilometer of TAZ 0.000 31.161 0.888 

Average zonal speed Average zonal speed in mph 0.000 70.000 36.028 

AADT Total Annual Average Daily Traffic (AADT) of TAZ/10000 0.000 27.550 0.931 

Truck AADT Total Truck AADT of TAZ/10000 0.000 2.747 0.083 

VMT 
Vehicle Miles Travel (VMT) = Total road length in miles * Average annual daily 

traffic / 100000 
0.000 29.928 0.225 

Number of flashing beacon sign Total number of flashing beacon of TAZ 0.000 2.000 0.009 

Number of school signal Total number of school signal of TAZ 0.000 1.000 0.001 

Built environment characteristics 

Number of commercial centers Total number of commercial center of TAZ 0.000 4.000 0.087 

Number of financial centers Total number of financial center of TAZ 0.000 17.000 0.586 

Number of educational centers Total number of educational center of TAZ 0.000 5.000 0.275 

Number of transit hubs Total number of transit hub of TAZ 0.000 11.000 0.051 
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Number of restaurants Total number of restaurant of TAZ 0.000 36.000 1.335 

Number of park and recreational 

centers 

Total number of park and recreational center of TAZ 
0.000 20.000 0.245 

Number of hospitals Total number of hospital of TAZ 0.000 2.000 0.017 

Number of entertainment centers Total number of entertainment center of TAZ 0.000 3.000 0.017 

Number of shopping centers Total number of shopping center of TAZ 0.000 78.000 1.492 

Land-use characteristics 

Urban area Ln (Urban area in a TAZ in acre) -9.275 8.491 4.291 

Institutional area Ln (Institutional area in a TAZ in acre) -16.417 7.071 0.785 

Industrial area Ln (Industrial area in a TAZ in acre) -12.943 6.709 0.671 

Retail/Office area Ln (Office/Retail area in a TAZ in acre) -17.312 6.611 1.744 

Residential area Ln (Residential area in a TAZ in acre) -12.427 8.014 3.596 

Recreational area Ln (Recreational area in a TAZ in acre) -13.946 10.040 0.388 

Land-use mix Land use mix = [
− ∑ (𝑝𝑘(𝑙𝑛𝑝𝑘))𝑘

𝑙𝑛𝑁
], where 𝑘 is the category of land-use, 𝑝𝑘 is the 

proportion of the developed land area devoted to a specific land-use, 𝑁  is the 

number of land-use categories in a TAZ 
0.000 0.929 0.355 
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TABLE 4 Estimation Results of Exposure Models – Hurdle-Negative Binomial Models 

Variable names 

Pedestrian demand models Bicycle demand models 

Pedestrian generation model Pedestrian attraction model 
Bicycle generation 

model 

Bicycle attraction 

model 

Estimates t-stat Estimates t-stat Estimates t-stat Estimates t-stat 

Probabilistic component 

Constant 2.346 55.615 2.319 54.774 -0.197 -3.661 -0.339 -6.208 

Land-use mix 0.605 8.143 0.539 7.212 0.596 8.187 0.719 9.832 

Urban area 0.224 37.315 0.215 35.200 0.305 38.242 0.300 36.621 

Number of Household 0.212 27.324 0.228 29.528 0.287 25.106 0.304 26.455 

Count component 

Constant -0.217 -27.198 -0.422 -57.616 -2.351 -69.340 -1.974 
-

70.397 

Sociodemographic characteristics 

Proportion of 65+ aged population 0.802 62.096 --* -- -0.546 -12.745 -- -- 

Roadway and traffic attributes 

Average zonal speed -0.008 -59.952 -- --     

AADT -0.035 -31.141 -0.047 -40.822 -0.028 -8.577 -- -- 

Proportion of arterial roads 0.320 53.077 0.255 43.828 0.095 6.921 0.044 3.473 

Proportion of 3 and more lane roads -0.316 -32.398 -0.420 -39.923 -0.740 -33.999 -1.243 
-

55.656 

Length of sidewalk 0.048 48.038 0.030 31.668 0.052 16.866 0.049 15.968 

Built environment 

Number of commercial centers -- -- -- -- -- -- -0.416 
-

29.226 

Number of educational centers -- -- -- -- -- -- 0.112 21.645 

Number of business centers -- -- 0.158 10.811 -- --   

Number of entertainment centers -- -- 0.194 14.437 -- -- 2.941 23.494 

Number of financial centers -- -- 0.021 17.835 -- -- -0.144 
-

43.018 

Number of park and recreational centers -- -- 0.099 38.188 -- -- 0.339 54.894 

Number of restaurants -- -- -0.022 -27.858 -- -- 0.225 73.716 

Number of shopping centers -- -- 0.032 46.627 -- -- -0.098 
-

36.605 

Number of transit hubs -- -- -0.057 -10.832 -- -- 0.260 23.207 

Land-use characteristics 

Industrial area -0.029 -22.989 -0.055 -42.162 0.092 31.510 0.052 17.338 

Recreational area 0.070 70.274 0.042 38.617 0.016 6.847 -0.057 
-

23.155 
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Residential area 0.060 57.244 0.062 55.280 0.440 82.309 0.361 74.286 

Retail/office area 0.049 40.450 0.037 25.914 -0.127 -39.940 -0.191 
-

53.656 

Institutional area 0.126 110.646 0.146 124.131 0.041 12.410 0.032 9.903 

Over dispersion parameter 0.917 116.574 0.826 110.526 3.081 26.618 6.009 20.365 
*variable insignificant at 90% significance level



TABLE 5 Estimation Result of Crash Count Models – Negative Binomial Models 

Variable names 
Pedestrian crash count model Bicycle crash count model 

Estimates t-stat Estimates t-stat 

Constant -3.063 -22.318 -3.789 -23.884 

Sociodemographic characteristics 

Population density 0.131 10.645 0.130 10.050 

Proportion of people aged 65+ -1.401 -4.229 -0.979 -3.019 

Roadway and traffic attributes 

Traffic signal density 0.223 6.001 0.146 3.994 

Proportion of arterial roads 0.325 3.723 0.341 3.619 

Proportion of local roads ---* --- -0.799 -2.241 

Length of sidewalk 0.025 2.090 --- --- 

Length of bike lane --- --- 0.016 1.681 

Length of bus lane --- --- 0.087 5.040 

AADT 0.037 2.373 0.090 2.272 

Truck AADT --- --- -1.054 -2.510 

Built environment 

Number of commercial centers --- --- 0.182 1.863 

Number of financial centers --- --- 0.063 3.204 

Number of educational centers  0.085 1.822 --- --- 

Number of transit hubs 0.254 5.506 --- --- 

Number of restaurants 0.086 9.055 0.052 5.135 

Number of park and recreational centers 0.123 3.173 --- --- 

Number of hospitals --- --- 0.307 3.143 

Land-use characteristics 

Urban area 0.123 5.098 0.165 5.876 

Residential area 0.041 2.076 0.082 3.736 

Recreational area --- --- -0.049 -2.222 

Land-use mix 0.810 4.673 0.697 3.719 

Exposure measures 

Total pedestrian trip demand per 

household [Total pedestrian daily trip 

demand in a TAZ/(Total number of 

household in a TAZ*100)] 

-0.277 -1.482 --- --- 

Total bicycle trip demand [Ln(Total 

bicycle daily trip demand in a TAZ] 
--- --- 0.042 2.055 

Over-dispersion parameter 1.004 9.297 0.641 5.642 
*variable insignificant at 90% significance level 
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TABLE 6 Estimation Results of Crash Proportions by Severity Models – Ordered Probit 

Fractional Split Models 

Variable name 

Pedestrian crash proportions 

by severity model 

Bike crash proportions by 

severity model 

Estimates t-stat Estimates t-stat 

Threshold 1 -1.708 -13.117 -1.450 -8.330 

Threshold 2 -0.870 -6.818 -0.395 -2.309 

Threshold 3 0.146 1.148 0.798 4.589 

Threshold 4 0.916 7.018 1.954 9.929 

Sociodemographic Characteristics 

Population Density -0.022 -1.898 -0.032 -2.061 

Proportion of people aged 22 to 29 -1.321 -1.965 --- --- 

Roadway and Traffic Attributes 

Number of flashing beacon sign ---* --- 0.936 2.347 

Number of school signals --- --- 0.362 2.474 

Availability of bike lane --- --- -0.288 -1.797 

VMT 0.049 1.675 --- --- 

Built Environment 

Number of commercial centers -0.149 -1.936 --- --- 

Number of hospitals --- --- -0.189 -1.795 

Number of park and recreational centers --- --- 0.139 2.802 

Land-use Characteristics 

Urban area -0.046 -2.466 -0.076 -2.079 

Residential area --- --- 0.066 2.560 

Exposure Measures 

Total pedestrian trip demand per household 

[Total pedestrian daily trip demand in a 

TAZ/(Total number of household in a 

TAZ*100)] 

-1.063 -2.756 --- --- 

Total bicycle trip demand per household 

[Total bicycle daily trip demand in a 

TAZ/Total number of household in a TAZ] 

--- --- -0.005 -1.040 

*variable insignificant at 90% significance level 
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TABLE 7 Predictive Performance Evaluation 

In sample predictive fit measures for Demand Models 

Models Events Observed Predicted 
Percentag

e Error 

Pedestrian generator model 

Total Zones with zero trip count 4007.00 4006.80 0.005 

Total number of zonal trips 1260090.6

0 

1255479.9

0 
0.366 

Average zonal trips 265.45 264.48 0.365 

Pedestrian attractor model 

Total Zones with zero trip count 4010.00 4010.49 -0.012 

Total number of zonal trips 1242270.5

0 

1236690.7

0 
0.449 

Average zonal trips 261.70 260.52 0.451 

Bicycle generator model 

Total Zones with zero trip count 4574.00 4573.82 0.004 

Total number of zonal trips 166248.45 165671.36 0.347 

Average zonal trips 35.02 34.90 0.343 

Bicycle attractor model 

Total Zones with zero trip count 4581.00 4581.18 -0.004 

Total number of zonal trips 165845.77 171959.97 -3.687 

Average zonal trips 34.94 36.22 -3.663 

In sample predictive fit measures for Count Models 

Models 
Mean crash 

MPB MAD 
Observed Predicted 

Pedestrian 0.31 0.33 -0.80 11.49 

Bicycle 0.21 0.22 -0.26 6.39 

In sample predictive fit measures for Fractional Split Models 

Models 
Mean proportion 

MAPE RMSE 
Severity Levels Observed Predicted 

Pedestrian 

Proportion of property 

damage only crashes 
0.113 0.113 

0.003 0.526 

Proportion of minor injury 

crashes 
0.237 0.237 

Proportion of non-

incapacitating injury 

crashes 

0.382 0.381 

Proportion of incapacitating 

injury crashes  
0.183 0.184 

Proportion of fatal crashes 0.085 0.084 

Bicycle 

Proportion of property 

damage only crashes 
0.115 0.115 

0.005 0.2912 
Proportion of minor injury 

crashes 
0.320 0.320 
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Proportion of non-

incapacitating injury 

crashes 

0.407 0.407 

Proportion of incapacitating 

injury crashes  
0.141 0.141 

Proportion of fatal crashes 0.017 0.017 

 



TABLE 8 Policy Scenarios 

Scenarios Description of scenarios Study region 
Number of 

zones 

Change in zonal 

demand 
Change in crash count 

Change in crash 

severity proportions 

Fatal Crash 

Pedestrian Bicycle Pedestrian Bicycle Pedestrian Bicycle 

Scenario 1 

  

50% reduction in traffic 

volume with 2 miles buffer 

area of different central 

business district (CBD) 

All zones 4747 0.164 0.043 -0.63 3.144 -4.967 -0.066 

Zones within 2 

miles buffer of 

CBD 

703 1.804 0.389 -3.266 -2.889 -4.687 -0.045 

Scenario 2 

  

30% reduction in traffic 

volume with 2 miles buffer 

area of different central 

business district (CBD) 

All zones 4747 0.096 0.026 -0.437 3.622 -4.963 -0.066 

Zones within 2 

miles buffer of 

CBD 

703 1.060 0.231 -2.120 -0.274 -4.664 -0.045 

Scenario 3 

  

15% reduction in traffic 

volume with 4 miles buffer 

area of different central 

business district (CBD) 

All zones 4747 0.125 0.030 -0.482 3.554 -4.963 -0.066 

Zones within 4 

miles buffer of 

CBD 

1375 0.498 0.090 -1.280 1.680 -4.55 0.003 

Scenario 4 

  

5% reduction in traffic 

volume with 6 miles buffer 

area of different central 

business district (CBD) 

All zones 4747 0.071 0.013 -0.34 3.935 -4.96 -0.066 

Zones within 6 

miles buffer of 

CBD 

1985 0.166 0.027 -0.589 3.281 -4.891 0.015 

Scenario 5 

All zones have sidewalk 

and the new proposed 

sidewalk length =

 
(𝑇𝐴𝑍 𝑎𝑟𝑒𝑎)0.5

2
 𝑚𝑒𝑡𝑒𝑟 

All zones 4747 -0.438 0.108 -1.360 4.367 -1.013 -0.063 

Scenario 6 
50% increase in existing 

sidewalk length 
All zones 4747 0.705 0.289 0.985 4.436 -1.111 -0.071 

Scenario 7 
15% reduction in zonal 

average maximum speed 
All zones 4747 1.407 0.000 -0.143 0.000 -1.107 0.000 

Scenario 8 
25% reduction in zonal 

average maximum speed 
All zones 4747 2.389 0.000 -0.150 0.000 -1.135 0.000 

Scenario 9 
15% reduction in zonal 

proportion of 3+lane road 
All zones 4747 0.287 0.576 -0.138 4.436 -1.077 -0.068 

Scenario 

10 

25% reduction in zonal 

proportion of 3+lane road 
All zones 4747 0.484 0.337 -0.143 4.415 -1.085 -0.066 

 



TABLE 9 Trip demand matrices by county level for the years 2010 and 2015 

PEDESTRIAN 

County 
Trip origin demand Trip destination demand Total trip demand 

2010 2015 % change 2010 2015 % change 2010 2015 % change 

Brevard 154936.5 153610.7 -0.9 149804.8 144628.0 -3.5 304741.3 298238.7 -2.1 

Flagler 26241.5 24853.4 -5.3 23153.7 22261.3 -3.9 49395.1 47114.6 -4.6 

Indian River 12066.8 12169.7 0.9 11826.2 11663.3 -1.4 23892.9 23833.0 -0.3 

Lake 67309.3 68943.5 2.4 66545.9 65799.1 -1.1 133855.2 134742.6 0.7 

Marion 95199.9 93593.9 -1.7 89602.9 89575.3 0.0 184802.8 183169.2 -0.9 

Orange 348163.9 342918.6 -1.5 355169.8 349371.2 -1.6 703333.7 692289.8 -1.6 

Osceola 67651.6 68006.6 0.5 65181.7 64571.8 -0.9 132833.3 132578.4 -0.2 

Polk 185959.9 195780.4 5.3 195543.4 205340.1 5.0 381503.4 401120.4 5.1 

Seminole 75690.1 79112.2 4.5 79212.2 80228.2 1.3 154902.3 159340.4 2.9 

Sumter 32272.8 30488.9 -5.5 26598.9 25489.9 -4.2 58871.7 55978.8 -4.9 

Volusia 189987.7 189005.7 -0.5 174051.2 172072.2 -1.1 364038.8 361077.9 -0.8 

Total 1255480.0 1258483.6 0.2 1236691.0 1231000.4 -0.5 2492171.0 2489483.9 -0.1 

BICYCLE 

County 
Trip origin demand Trip destination demand Total trip demand 

2010 2015 %change 2010 2015 %change 2010 2015 %change 

Brevard 21663.6 21822.8 0.7 23172.9 23344.3 0.7 44836.5 45167.1 0.7 

Flagler 2940.3 2964.9 0.8 2634.0 3031.2 15.1 5574.4 5996.1 7.6 

Indian River 1735.3 1734.3 -0.1 999.5 998.4 -0.1 2734.7 2732.8 -0.1 

Lake 10784.3 10676.6 -1.0 9977.6 9774.7 -2.0 20761.9 20451.2 -1.5 

Marion 5238.3 5448.9 4.0 4226.3 4344.1 2.8 9464.5 9793.0 3.5 

Orange 57661.9 60551.9 5.0 64084.7 68918.9 7.5 121746.7 129470.8 6.3 

Osceola 4026.1 4308.8 7.0 3875.6 3974.1 2.5 7901.8 8282.9 4.8 

Polk 10931.1 11589.5 6.0 10687.7 11851.7 10.9 21618.8 23441.2 8.4 

Seminole 12179.4 12529.5 2.9 11558.9 11903.0 3.0 23738.3 24432.5 2.9 

Sumter 553.1 614.6 11.1 817.9 1019.8 24.7 1371.0 1634.4 19.2 

Volusia 37958.0 38199.6 0.6 39924.9 41457.9 3.8 77882.8 79657.5 2.3 

Total 165671.4 170441.4 2.9 171960.0 180618.0 5.0 337631.3 351059.4 4.0 

 



APPENDIX A: Hurdle Negative Binomial (HNB) Model Framework 

The Hurdle approach is generally used for modeling excess sampling zeroes. It is usually 

interpreted as a two-part model: the first part is a binary response structure modeling the 

probability of crossing the hurdle of zeroes for the response and the second part is a zero-

truncated formulation modeled in the form of standard count models (Poisson or NB). Thus, 

the probability expression for the Hurdle model can be expressed as: 

Λi[yi] = { 

πi yi = 0

(1−πi )

(1−e−μi)
Pi(yi) yi > 0

  (1) 

where 𝑖 is the index for TAZ (𝑖 = 1,2,3, … , 𝑁) and 𝑦𝑖 is the index for non-motorist (pedestrian 

and bicycle) trips occurring daily in a TAZ 𝑖. 

In Equation 1, 𝜋𝑖 is the probability of zero trip count and is modeled as a binary logit model as 

follows: 

𝜋𝑖 =
𝑒𝑥𝑝(𝛾𝜼𝑖)

1+𝑒𝑥𝑝(𝛾𝜼𝑖)
 (2) 

where 𝜼𝑖 is a vector of attributes and 𝛾 is a conformable parameter vector to be estimated. 

𝑃𝑖(𝑦𝑖) in Equation 1 can be presented as NB expression in forming Hurdle NB (HNB) 

regression model. Given the setup as presented in Equation 1, the probability distribution for 

NB can be written as: 

𝑃𝑖(𝑦𝑖|, 𝜇𝑖,𝛼) =  
Γ(𝑦𝑖+𝛼−1)

Γ(𝑦𝑖+1)Γ(𝛼−1)
(

1

1+𝛼𝜇𝑖
)

1

𝛼
(1 −

1

1+𝛼𝜇𝑖
)

𝑦𝑖

 (3) 

where Γ(∙) is the Gamma function and 𝛼 is the NB dispersion parameter. 𝜇𝑖 is the expected 

number of daily trips non-motorists are making in TAZ 𝑖 where 𝛼 represents the overdispersion 

parameter. We can express 𝜇𝑖 as a function of explanatory variable (𝒛𝑖) by using a log-link 

function as 𝜇𝑖 = 𝐸(𝑦𝑖|𝒛𝑖) = 𝑒𝑥𝑝(𝜹𝒛𝑖), where 𝜹 is a vector of parameters to be estimated.  

Finally, the weighted log-likelihood function for the HNB model can be written as: 
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𝐿𝐿 = 𝑤𝑖 ∗ { 

𝑙𝑛 (𝜋𝑖) 𝑦𝑖 = 0

ln (
(1−𝜋𝑖)

(1−𝑒−𝜇𝑖)
𝑃𝑖(𝑦𝑖)) 𝑦𝑖 > 0

  (4) 

The daily trip weight at the zonal level is generated by using the following formulation: 

𝑤𝑖 = ∑
𝑌𝑒𝑎𝑟𝑙𝑦 𝑝𝑒𝑟𝑠𝑜𝑛 𝑡𝑟𝑖𝑝 𝑤𝑒𝑖𝑔ℎ𝑡

365

𝐽
𝑗=1    (5) 

where 𝑗 (𝑗 = 1,2,3, … 𝐽) represents the index for trip.  

The reader should note that in computing the weighting factor, as presented in Equation 5, we 

divided the yearly person trip factor, as obtained from NHTS data, by 365 to convert the yearly 

trip count to a daily trip count. Substitution of (𝑃𝑖(𝑦𝑖)) by Equation 3 into Equation 4 results 

HNB model. The model presented in Equation 4 is estimated by using a maximum likelihood 

approach. 

 

APPENDIX B: Negative Binomial (NB) Model Framework 

The focus of our study is to model pedestrian crash frequency and bicycle crash frequency at 

zonal level by employing NB modeling framework. The econometric framework for the NB 

model is presented in this section. 

 

Let 𝑖 be the index for TAZ (𝑖 = 1,2,3, … , 𝑁) and 𝒚𝒊 be the index for crashes occurring over a 

period of time in a TAZ 𝒊. The NB probability expression for random variable 𝒚𝒊 can be written 

as: 

𝑃𝑖(𝑦𝑖|𝜇𝑖 , 𝛼) =  
Γ (𝑦𝑖 +

1
𝛼

)

Γ(𝑦𝑖 + 1)Γ (
1
𝛼

)
(

1

1 +
𝜇𝑖

𝛼

)

1
𝛼

(1 −
1

1 +
𝜇𝑖

𝛼

)

𝑦𝑖

  

where, 𝚪(∙) is the Gamma function, 𝜶 is the NB dispersion parameter and 𝝁𝒊 is the expected 

number of crashes occurring in TAZ 𝒊 over a given period of time. We can express 𝝁𝒊 as a 

function of explanatory variable (𝒙𝒊) by using a log-link function as: 𝝁𝒊 = 𝑬(𝒚𝒊|𝒙𝒊) =

𝒆𝒙𝒑(𝜷𝒙𝒊), where 𝜷 is a vector of parameters to be estimated. Finally, the log-likelihood 

function for the NB model can be written as: 
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𝐿𝐿 = ∑ 𝑙𝑜𝑔(𝑃𝑖)

𝑁

𝑖=1

  

The parameters to be estimated in the model of equation 2 are: 𝜷 and 𝜶. The parameters are 

estimated using maximum likelihood approaches.  

 

APPENDIX C: Ordered Probit Fractional Split (OPFS) Model Framework 

The formulation for the OPFS model for modeling the proportion of crashes by severity is 

presented in this section. The reader would note that conventional maximum likelihood 

approaches are not suited for factional proportion models. Hence, we resort to a quasi-

likelihood approach. Let q (q = 1, 2, …, Q) be an index to represent TAZ, and let k (k = 1, 2, 

3, …, K) be an index to represent severity category. The latent propensity equation for severity 

category at the q th zone: 

𝑦𝑞
∗ = 𝛼′𝑧𝑞 + 𝜉𝑞,  (1)  

This latent propensity 𝑦𝑞
∗ is mapped to the actual severity category proportion 𝑦𝑞𝑘 by the   

thresholds ( −=0  and =k ). 𝑧𝑞 is an (L x 1) column vector of attributes (not including a 

constant) that influences the propensity associated with severity category.   is a corresponding 

(L x 1)-column vector of mean effects. 𝜉𝑞 is an idiosyncratic random error term assumed to be 

identically and independently standard normal distributed across zones q. 

 

Model Estimation 

The model cannot be estimated using conventional Maximum likelihood approaches. Hence 

we resort to quasi-likelihood based approach for our methodology. The parameters to be 

estimated in the Equation (2) are  , and   thresholds. To estimate the parameter vector, we 

assume that  

1,10),,()|(
1

== 
=

K

k

qkqkqkqkqk HHHzyE   (2)  
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qkH in our model takes the ordered probit probability ( qkP ) form for severity category k defined 

as  

       1 qqkqqkqk zGzGP  −−−= −  (3)  

The proposed model ensures that the proportion for each severity category is between 0 and 1 

(including the limits). Then, the quasi-likelihood function, for a given value of q vector may 

be written for site q as: 

    
qkdK

k

qqkqqkq zGzGL 
=

−
−−−=

1

1    ),(   (4)  

where G(.) is the cumulative distribution of the standard normal distribution and qkd  is the 

proportion of crashes in severity category k. The model estimation is undertaken using routines 

programmed in Gauss matrix programming language.  

 


