- 1 Enhancing Non-Motorist Safety by Simulating Trip Exposure using a Transportation
- 2 Planning Approach
- 3
- 4

5 Shamsunnahar Yasmin*

- 6 Senior Lecturer/Senior Research Fellow
- 7 Queensland University of Technology (QUT)
- 8 Centre for Accident Research & Road Safety Queensland (CARRS-Q) &
- 9 Research Affiliate, Department of Civil, Environmental & Construction Engineering, University
- 10 of Central Florida
- 11 Tel: +61731384677
- 12 Email: <u>shams.yasmin@qut.edu.au</u>
- 13
- 14

15 **Tanmoy Bhowmik**

- 16 Postdoctoral Scholar
- 17 Department of Civil, Environmental & Construction Engineering
- 18 University of Central Florida
- 19 Tel: 1-407-927-6574; Fax: 1-407-823-3315
- 20 Email: tanmoy78@knights.ucf.edu
- 21

2223 Moshiur Rahman

- 24 Traffic Engineer
- 25 Marlin Engineering
- 26 Tel: 321-276-7580
- 27 Email: moshiur@knights.ucf.edu
- 28
- 29

30 Naveen Eluru

- 31 Professor
- 32 Department of Civil, Environmental & Construction Engineering
- 33 University of Central Florida
- 34 Tel: 407-823-4815, Fax: 407-823-3315
- 35 Email: <u>naveen.eluru@ucf.edu</u>
- 36
- 37
- 38 Date: March, 2021
- 39
- 40
- 41
- 42 * Corresponding author
- 43

1 ABSTRACT

2 Traditionally, in developing non-motorized crash prediction models, safety researchers have 3 employed land use and urban form variables as surrogate for exposure information (such as 4 pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models 5 is affected by the lack of "true" non-motorized exposure data. High-resolution modeling 6 frameworks such as activity-based or trip-based approach could be pursued for evaluating planning 7 level non-motorist demand. However, running a travel demand model system to generate demand 8 inputs for non-motorized safety is cumbersome and resource intensive. The current study is 9 focused on addressing this drawback by developing an integrated non-motorized demand and crash 10 prediction framework for mobility and safety analysis. Towards this end, we propose a three-step 11 framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist 12 generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity 13 14 proportion models. The framework is developed for the Central Florida region using non-motorist 15 demand data from National Household Travel Survey (2009) Florida Add-on and non-motorist 16 crash frequency and severity data from Florida. The applicability of the framework is illustrated 17 through extensive policy scenario analysis.

18

19 Keywords: Pedestrian; Bicycle; Active travel; Travel Demand; Safety; Negative Binomial;
20 Fractional Split; Non-motorist

1 **1. INTRODUCTION**

2 Urban regions in North America are encouraging the adoption of active modes of transportation 3 by proactively developing infrastructure for non-motorist (pedestrians and bicyclists). However, a 4 strong impediment to the increasing adoption of active modes of transportation is the safety risk 5 associated with these modes. The safety risk posed to active transportation users in Florida is 6 exacerbated compared to active transportation users in the rest of the US. While the national 7 average for pedestrian (bicyclist) fatalities per 100,000 population is 1.50 (2.35), the corresponding 8 number for the state of Florida is 2.56 (6.80), which clearly demonstrates the safety risk for non-9 motorists in Florida (NHTSA, 2015). An important tool to determine the critical factors affecting 10 the occurrence of pedestrian and bicycle crashes and identifying vulnerable locations is the 11 application of planning level crash prediction models.

12 Traditionally, in developing these models, safety researchers have employed land use and 13 urban form variables as surrogate for exposure information (pedestrian, bicyclist volumes and 14 vehicular traffic). The quality of these crash prediction models is affected by the lack of "true" 15 non-motorist exposure data. Moreover, to assess how recent investments in pedestrian and bicycle 16 transportation infrastructure are influencing their mobility and safety, it is important to develop 17 demand models. High-resolution modeling frameworks such as activity-based or trip-based 18 approaches could be pursued for evaluating planning level non-motorist demand. However, the 19 current state-of-the-art of travel demand models focus on generating vehicular demand (for 20 automobile and transit). For example, the existing Central Florida Regional Planning Model 21 (CFRPM) is predominantly focused on auto mode and public transit mode. The modeling approach 22 does not consider non-motorized modes in detail. Therefore, travel demand matrices of active 23 transport modes are not often readily available to integrate those in road safety evaluation. Even

when non-motorist demand is considered, the models employed for these dimensions are rulebased or simplistic models with very few parameters. Further, running a travel demand model system to generate inputs for non-motorist safety is cumbersome, resource intensive and unlikely to be implemented.

5 The current study is focused on addressing this drawback by developing an integrated 6 demand and crash prediction framework for active modes (pedestrians and bicyclists) with the 7 objective of using it for mobility and safety analysis. To be sure, analysts often develop non-8 motorists' demand model at different local levels, such as: regional level (Porter et al. 1999), 9 corridor (Matlick 1998) or sub-area level and household/individual level (Pulugurtha and Repaka 10 2008, Schneider et al. 2009a). Extrapolating planning level non-motorists demand from corridor 11 level exposure data is not straightforward. An alternative approach to generating planning level 12 non-motorist demand is to estimate origin-destination (O-D) demand at an aggregate level. The 13 proposed integrated demand and safety framework would allow us to devise evidence-based policy 14 implications for improving mobility and safety of pedestrians and bicyclists. In the following 15 section, non-motorist refers to pedestrians and bicyclists collectively, while non-motorist crash 16 refers to pedestrian and bicycle involved crashes and finally non-motorist demand refers to 17 pedestrian and bicycle trips.

18

19 2. BACKGROUND AND CURRENT STUDY IN CONTEXT

20

21 **2.1 Earlier Research**

As the focus of our research is on examining non-motorist demand and non-motorist safety, weorganize our literature along these two dimensions.

1 Non-motorist Demand

2 Accurate information on non-motorized trip volumes is useful for many studies including public 3 health studies (Cervero and Duncan 2003), non-motorist safety research (Miranda-Moreno et al. 4 2011), and active mode infrastructure improvements (Ercolano et al. 1997). Table 1 provides a 5 summary of the literature on non-motorist demand modeling. The table provides information on 6 the unit of analysis, the spatial and temporal aggregation level, (non-motorists counts at what 7 spatial temporal unit), methodological framework employed, and different categories of 8 exogenous variables considered. The studies presented in Table 1 are categorized along two 9 streams: (1) studies examining the non-motorist activity only and (2) studies analyzing non-10 motorist demand and safety simultaneously.

Several observations can be made from Table 1. First, only a small share of studies had 11 12 developed an integrated framework for analyzing non-motorist demand and safety. Second, several 13 spatial units were considered for analyzing the non-motorist demand including segments, 14 intersections, census block and household amongst which intersections and segments are the most 15 prevalent one. Third, in terms of temporal aggregation, majority of the earlier research has 16 examined the non-motorist traffic at a daily level or at an hourly level. Finally, the methodological 17 frameworks adopted in these studies include Linear regression, Ordinary least square, Negative 18 binomial, Poisson regression, Hurdle negative binomial, Generalized linear mixed model, Time 19 series model and Space syntax tool.

With respect to exogenous variables, the overall findings from earlier research effort are consistent. The various factors identified as influencing non-motorist demand include: (1) sociodemographic characteristics such as population density and household income, (2) land-use characteristics such as residential land use and land use mix, (3) built environment characteristics such as transport accessibility and nearby educational center (such as universities), (4) roadway
 characteristics such as sidewalk length and presence of traffic signal, and (5) weather variables
 such as average temperature and precipitation rate.

4

5 Non-motorist Safety

6 There is a vast body of safety literature examining the factors affecting crash occurrence of active 7 travellers (pedestrians and bicyclists) and the severity of different types of non-motorist crashes 8 with motorized vehicles. It is beyond the scope of the paper to review all the research on non-9 motorists safety (see (Eluru et al., 2008; Cottrill and Thakuriah, 2010; Ukkusuri et al., 2012, 2011; 10 Siddiqui et al., 2012; Abdel-Aty et al., 2013; Wei and Lovegrove, 2013; Yasmin et al., 2014; Lee 11 et al., 2015; Cai et al., 2016; Nashad et al., 2016) for a detailed review). In general, studies 12 evaluating non-motorist road user safety do not consider non-motorist exposure in detail. In our 13 paper, we focus our attention on studies that attempted to incorporate non-motorist exposure in 14 their studies.

15 A critical component in the process of analyzing non-motorist safety is the selection of 16 appropriate exposure measure. A number of research efforts have examined several surrogate 17 measures to gain a comprehensive understanding of the individual non-motorist crash risk. In 18 general, total five types of matrices are being developed throughout the years to be used as 19 exposure for the non-motorist safety analysis (see (Jamali & Wang, 2017) for detail review) 20 including: (1) area-based approach such as population density (Chakravarthy et al., 2010; Cottrill 21 & Thakuriah, 2010; Wang et al., 2017; Sze et al., 2019), number of trips (Bouaoun et al., 2015; 22 Kerr et al., 2013; Bao et al., 2017; Su et al., 2020; Kamel and Sayed, 2020) and vehicular traffic 23 (C. Lee & Abdel-Aty, 2005; Wier et al., 2009; Wei and Lovegrove, 2013; Kamel and Sayed, 2020);

(2) <u>point-based approach</u> such as non-motorist volume (Lee et al., 2019, 2018a;; Guo et al., 2018;
 Xie et al., 2018; Ding et al., 2020; Cai et al., 2020; Heydari et al., 2020; Kwayu et al., 2020); (3)
 <u>segment-based approach</u> such as pedestrian volume at a segment (Clifton et al., 2008); (4)
 <u>distance-based approach</u> such as distance (Molino et al., 2012); and (5) <u>trip-based approach</u> such as pedestrian volume at a., 2012); and (5) <u>trip-based approach</u> such as space time prism (Lam et al., 2013, 2014; Yao et al., 2015).

6 Over the past few years, a significant debate has emerged among the researchers about the 7 best exposure matrix that can explain the non-motorist crash risk. Several studies investigated the 8 link between non-motorist trip frequency and collision; and concluded that motorists were more 9 likely to exhibit safer driving behavior in the presence of higher volumes of pedestrians and 10 bicyclists (Jacobsen, 2015; Schepers, 2012). However, the relationship is non-linear which implies 11 that with the increase in number of walking or bicycling trips, the absolute number of non-motorist 12 involved crashes might increase, but the individual risk of the non-motorist involved in a crash 13 may decline (for example see (Robinson, 2005; Elvik, 2009; Elvik and Bjørnskau, 2017; Xu et al., 14 2017). Robinson (2005) investigated the accuracy of the relationship between non-motorist 15 volume and safety by conducting a comparison study in Australia and found that the risk per 16 kilometer for cyclist dropped by around 34% when the volume of the cyclists was doubled. In 17 recent years, researchers have geared towards trip-based approach where the amount of time or 18 distance travelled by walking/cycling are used as exposure for examining the non-motorist 19 involved crash occurrences (Lam et al., 2013, 2014; Yao et al., 2015; Yao & Loo, 2016; Ding et 20 al., 2020;). Yao et al. (2015) investigated the vehicle-pedestrian crashes and proposed two 21 approaches for estimating the pedestrian exposure matrix including: (1) Deterministic approach -22 space time path (SPT) method using the shortest path algorithm based on the origin-destination of 23 the trip and (2) Probabilistic approach - potential path tree (PPT) method that considers all the

1 possible paths between origin and destination given the link level travel time. The findings from 2 the study indicate that while both methods are useful for measuring the pedestrian exposure, the 3 PPT method is more efficient in explaining the manner of vehicle-pedestrian crashes. A relatively 4 recent study by Ding and colleagues (Ding et al., 2020) considered both bicycle use and time 5 duration (based on the public bicycle rental system) to serve as proxy for exposure in their bicycle 6 crash risk model. The authors concluded that the duration of bicycle serve as a better exposure in 7 capturing the interactions between bicycles and motor vehicles as indicated by the superior 8 performance of the model using duration relative to the model considering bicycle frequency as 9 exposure. Another study by Li et al., 2020 considered three different types of exposure including 10 trip frequency, distance travelled and number of roads crossed in their pedestrian crash model and 11 found that model using trip frequency to serve as a surrogate for exposure provided inferior 12 performance (statistical fit and prediction accuracy) compared to the other models.

13

14 **2.2 Current Study**

15 It is evident from the literature review that apart from a handful of studies, non-motorist safety 16 literature has not adequately addressed the link between non-motorist demand and safety. With 17 growing emphasis on improving mobility in Florida region there are targeted efforts to enhance 18 non-motorist mobility. To evaluate the effectiveness of these strategies and to enhance safety, it is 19 useful to develop methods that accommodate the potential adoption of active modes within the 20 mobility planning process. Thus, developing an integrated framework of demand and safety would 21 allow a seamless evaluation of various scenarios that influence mobility and/or safety. In 22 transportation research, the concept of demand/exposure is defined based on the underlying 23 research question and the intended use of data. The exposure measures can be identified at

1 aggregate or disaggregate level by considering different unit of analysis (as discussed in the earlier 2 research section for the non-motorists group). The distance travelled and/or time-based exposures, 3 disaggregate exposure measures, allows us to disaggregate trip over space and time. However, 4 generating these exposure measures are often computationally burdensome. Therefore, in our 5 study, we resort to using aggregate level demand in terms of total trip as exposure measure, since 6 generation of these measures are practice-oriented and less expensive¹. Aligned with "trip 7 generation step" of traditional four-step approach of travel demand modeling, we identify the total 8 number of non-motorist trips generated and attracted in different zones. Based on these aggregate 9 counts, we further develop separate models for trip generation and attraction as a function of zonal 10 level attributes. Finally, we hypothesize that total zonal level exposure (zonal level trip generation 11 count + zonal level trip attraction count) would influence zonal level safety and, hence, considered 12 as the exposure matrix in examining zonal-level safety. Thus, in developing an integrated 13 framework of demand and safety for non-motorist, we propose a three-step approach as follows: 14 (1) develop aggregate level models for non-motorist trip generation and attraction at a zonal level, 15 (2) develop non-motorists trip exposure matrices for safety evaluation and (3) develop aggregate level non-motorists crash frequency and crash severity proportion models. 16

We investigate non-motorists demand at a zonal level by using aggregate trip information
based on origin and destination locations of trips. We develop four models: (1) <u>Pedestrian</u>
<u>generation model</u> – based on zonal level pedestrian origin trip demand, (2) <u>Pedestrian attraction</u>
<u>model</u> – based on zonal level pedestrian destination trip demand, (3) <u>Bicycle generation model</u> –

 $^{^{1}}$ Chu (2003) identified that distance-based exposure measure can generate misleading result because of difference in travel speed across different trip mode. Using such disaggregate measure in an aggregate level analysis may mislead the outcome. Beyond all the arguments on which measure should adopt, there is no clear consensus in existing safety literature on which exposure measure is more appropriate and more effective. In fact, different exposure measure can lead to different results. In our study design, we hypothesized that the aggregate level demand is surrogate for aggregate level safety analysis. It is beyond the scope of this study is to examine which exposure measure – aggregate/disaggregate – is better representative of non-motorist exposure matrices.

1 based on zonal level bicycle origin trip demand, (4) <u>Bicycle attraction model</u> – based on zonal 2 level bicycle destination trip demand. In the second step, predicted origin and destination trip 3 counts are used from the exposure models to generate different zonal level trip exposure matrices 4 for both pedestrian and bicycle modes to be considered as non-motorists exposure measures for 5 safety evaluation. Finally, in the third step, we estimate non-motorist safety models by employing 6 predicted exposure matrices, generated from second step, along with other zonal attributes. 7 Specifically, we estimate four different aggregate level safety models: (1) zonal-level crash count 8 model for examining pedestrian-motor vehicle crash occurrences, (2) zonal-level crash count 9 model for examining bicycle-motor vehicle crash occurrences (3) zonal-level crash severity model 10 for examining pedestrian crash injury severity by proportions and (4) zonal-level crash severity 11 model for examining bicycle crash injury severity by proportions. These models are estimated for 12 the Central Florida Region as a function of zonal level sociodemographic characteristics, 13 roadway/traffic attributes, built environment and land-use characteristics. The applicability of the 14 framework is illustrated through extensive policy scenario analysis.

The rest of the paper is organized as follows: The description of the data and exogenous variables adopted in the analysis are describes in Section 3. Model estimation results are presented in Section 4. Section 5 presents the policy scenario analysis and finally, conclusions are presented in section 6.

19

20 **3. DATA**

21

1 **3.1 Study Area and Data Sources**

2 The study area is the Central Florida Region defined by Central Florida Regional Planning Model 3 version 6.0 (CFRPM 6.0) which includes 4,747 traffic analysis zones (TAZ). Data for developing 4 non-motorist exposure models are sourced from 2009 National Household Travel Survey (NHTS) 5 Add-on database provided by the Florida Department of Transportation (FDOT) that allowed us 6 to geo-tag trips recorded in the Central Florida region. In the dataset, there were 2,749 households, 7 5,090 individuals and 22,359 trips. Among these trips, walk and bike trip shares were 8.8% and 8 1.3%, respectively. Data for the non-motorist safety analysis is compiled from FDOT Crash 9 Analysis Reporting System (CARS) and Signal Four Analytics (S4A) databases. CARS and S4A 10 are long and short forms of crash reports in the State of Florida, respectively. The long form crash 11 report includes higher injury severity level or crash related to criminal activities (such as hit-and-12 run or Driving Under Influence). The Short Form Report is used to report all other types of traffic 13 crashes. Crash data records from short and long form databases are compiled to generate complete 14 information on road crashes and hence are used for the purpose of analysis in the current study 15 context. For this study, we have examined the pedestrian and bicycle crash events for the year 16 2010 to incorporate the exposure measures in terms of non-motorist safety². For the year 2010, 17 1,474 and 1,012 crashes were reported involving pedestrian and bicycle, respectively.

18

19 **3.2 Data Description**

The dependent variables for the exposure models are daily zonal origin trip count and daily zonal
destination trip count for pedestrians and bicyclists. We incorporate "person-trip weight" – as

 $^{^2}$ The proposed integrated demand-safety approach can be employed by using recent data, if both demand and safety data are available to maintain the same base year condition. In our study, we had access to the demand data for the year 2009 from NHTS data. Therefore, for safety models, we have selected year 2010 to reflect the base year demand condition from 2009 NHTS data.

1 defined in NHTS database – to extrapolate the non-motorized trips to represent number of trips for 2 the zones in the Central Florida region. Locations of zones with pedestrian and bicycle O-D 3 demand are shown in Figure 2. With respect to safety component, the geo-coded crash data 4 involving non-motorists are aggregated at the level of TAZ for the year 2010. These crashes are 5 further classified by crash severity outcomes (property damage only (PDO), possible injury, non-6 incapacitating, incapacitating injury and fatal crashes) at the zonal level. Locations of zones with 7 pedestrian and bicycle crashes (total crashes and by crashes by different injury severity levels) are 8 shown in Figures 3 and 4, respectively. The corresponding variables by proportion (number of 9 specific severity level/total number of all crashes) include: (1) proportion of PDO crashes, (2) 10 proportion of possible injury crashes, (3) proportion of non-incapacitating injury crashes, (4) 11 proportion of incapacitating injury crashes and (5) proportion of fatal crashes. The dependent 12 variables and sample size for both exposure and safety models are presented in Table 2. The crash 13 proportion models for pedestrian and bicyclists are estimated only for zones with non-zero crashes. 14 In addition to the different zonal level dependent variables, the explanatory attributes 15 considered in the empirical study are also aggregated at the TAZ level accordingly. For the 16 empirical analysis, the selected explanatory variables can be grouped into four broad categories: 17 sociodemographic characteristics, roadway and traffic attributes, built environment characteristics 18 and land use characteristics. To ensure that the exogenous variables considered reflect the analysis 19 year trend, we generate these variables using data from 2010. Table 3 offers a summary of the 20 sample characteristics of the exogenous variables and the definition of variables considered for 21 final model estimation along with the zonal minimum, maximum and average.

1 **4. EMPIRICAL ANALYSIS**

The model estimation results for different components are discussed separately. The final specifications of the models were based on removing the statistically insignificant variables in a systematic process based on statistical significance (90% confidence level). In estimating the models, several functional forms and variable specifications are explored. The functional form that provided the best result is used for the final model specifications as presented in Table 3.

7

8 **4.1 Exposure Models**

9 In estimating aggregate level exposure models, the non-motorist trip demand is represented as total 10 number of non-motorist trips originated from and destined to at a zonal resolution. Thus, the 11 demands are non-negative integer values. Naturally, these integer values can be examined by 12 employing count regression approaches, such as the Poisson and Negative Binomial (NB) 13 regression approaches. However, for the zonal-level non-motorist trip counts, more than 84% and 14 96% TAZs have zero pedestrian and bicycle trip records, respectively. The traditional count 15 models (Poisson and NB models) do not account for such over-representation of zero observations 16 in the data. The Hurdle model is typically used in the presence of such excess zeroes. Cameron 17 and Trivedi (1998) presented these models as finite mixture models with a degenerate distribution 18 and probability mass concentrated at zeroes. The Hurdle approach is generally used for modeling 19 excess sampling zeroes. It is interpreted as a two-part model: the first part is a binary response 20 structure modeling the probability of crossing the hurdle of zeroes for the response and the second 21 part is a zero-truncated formulation modeled in the form of standard count models (Poisson or 22 NB). Therefore, to accommodate for the preponderance of zero trip counts, exposure models are 23 developed using Hurdle Negative Binomial (HNB) regression approach (see Cai et al. 2016 for

1 methodological framework)³. Table 4 presents the estimation results of the exposure models: 2 pedestrian trip generation (2nd and 3rd columns), pedestrian trip attraction (4th and 5th columns), 3 bicycle trip generation (6th and 7th columns), and bicycle trip attraction (8th and 9th columns) 4 models. In the Hurdle model, the positive (negative) coefficient in the probabilistic component 5 corresponds to increased (decreased) propensity of non-zero trip events. The positive (negative) 6 coefficient in the count component of the Hurdle model corresponds to increased (decreased) non-7 zero trip count events. Pedestrian and bicycle trip demand models are discussed in the following 8 sections.

9

10 Pedestrian Trip Demand Models

Probabilistic Component: In the probabilistic components, land-use mix, urban area and number of households are found to be significant in both pedestrian trip generation and attraction models. As these variables serve as surrogates for pedestrian activity, it is expected that TAZs with higher levels of these variables are likely to be associated with pedestrian trip generation and attraction.

15

16 <u>Count Component:</u> With respect to sociodemographic characteristics, from Table 4 we can see that 17 proportion of 65+ aged population is positively associated with pedestrian trip generation. Zones 18 with higher average speed limit on roadways are likely to generate less pedestrian trip origin 19 demand (Pulugurtha and Repaka, 2008). Annual average daily traffic (AADT) is negatively 20 associated with both pedestrian demand components. Higher proportion of arterial roads in zones 21 are likely to increase pedestrian activities (Hankey et al., 2012) for generation and attraction. 22 Higher proportion of roadways with 3 or more lanes are negatively associated with zonal level

³ The econometric framework of HNB model is presented in APPENDIX A.

pedestrian activities. As expected, zones with higher length of sidewalk are likely to have higher
 level of pedestrian activities (Lu et al., 2018).

3 With respect to built environment, we find that higher number of business centers, 4 entertainment centers, financial centers, park/recreational centers and shopping centers are 5 positively associated with pedestrian attraction. On the other hand, higher number of transit hubs 6 and restaurants are found to be negatively associated with pedestrian destination demand. Land-7 use characteristics are found to have significant influence in both pedestrian trip generation and 8 attraction models. Among different land-use categories, industrial area is found to be negatively 9 associated with pedestrian trip origin and trip destination demands (see (Hankey and Lindsey, 10 2016; Lu et al., 2018) for similar result). All other land-use categories (recreational, residential, 11 retail/office and institutional area) are likely to generate higher level of pedestrian activities.

12

13 Bicycle Trip Demand Models

14 <u>Probabilistic Component:</u> Land-use mix, urban area and number of households are found to be 15 significant in both bicycle trip generation and attraction models. As these variables serve as 16 surrogates for bicycle activity, it is expected that TAZs with higher levels of these variables are 17 likely to be associated with higher levels of bicycle trip generation and attraction.

18

19 <u>Count Component:</u> Proportion of 65+ aged population is negatively associated with bicycle 20 generation indicating that TAZs with higher number of population aged 65+ have lower bicycle 21 origin demand (Guo et al., 2007). AADT is negatively associated with bicycle trip generation 22 component. Furthermore, higher proportion of arterial roads in zones are likely to have higher 23 bicycle activity (see (Nordback et al., 2017)). Higher proportion of roadway with 3 or more lanes are negatively associated with zonal level bicycle activities. Zones with higher sidewalk length are
 likely to have higher level of bicycle activities.

3 Built environment attributes are considered only in bicycle attraction model. The study 4 finds that higher number of education centers, entertainment centers, park/recreational centers, 5 restaurants and transit hubs are positively associated with bicycle attractions. On the other hand, 6 higher number of commercial centers, financial centers and shopping centers impose a negative 7 effect on bicycle destination demand. Among different land-use categories, industrial, residential 8 and institutional areas are found to be positively associated with bicycle activities (Tabeshian and 9 Kattan, 2014). With respect to recreational area, the variable shows positive association in bicycle 10 generation model but has a negative correlation with bicycle attraction model. On the other hand, retail/office area is found to be negatively associated with both bicycle trip origin and destination 11 12 demand (Chen et al., 2017).

13

14 **4.2 Non-motorist Trip Exposure Matrices**

15 In evaluating non-motorist exposure, we also generate different zonal level trip exposure matrices 16 with the predicted number of daily trip origin (by using trip generation model results) and daily 17 trip destination (by using trip attraction model results) at zonal level for both pedestrian and bicycle 18 group of road users. Then, zonal level total trip demand matrices are generated by combining the 19 trip origin and destination demand matrices across different zones (total trip demand = trip origin 20 demand + trip destination demand). Thus, the dimensions of the generated total trip demand 21 matrices are $[4747 \times 1]$ with total trip counts across different rows. The total zonal level trip demand 22 matrices are generated for pedestrians and bicyclists separately, which is used as exogenous 23 variables in developing safety models along with other zonal attributes.

1 **4.3 Safety Models**

2 We estimate two crash count models and two crash proportions by severity models for pedestrians 3 and bicyclists. Crash count models are developed by using NB model, while the crash proportions 4 by severity models are developed using Ordered Probit Fractional Split (OPFS) approach (see 5 Bhowmik et al., 2018; Lee et al., 2018b for unordered fractional split structure and Yasmin and 6 Eluru 2018; Yasmin et al. 2016; Bhowmik et al., 2019c for ordered fractional split structure). The 7 NB model, which offers a closed-form expression while relaxing the mean variance equality 8 constraint of Poisson regression, serves as the workhorse for crash count modeling. Therefore, 9 crash count models are developed in this study by using the NB modeling approach⁴. Crash count 10 data are often compiled by injury severity outcomes (for example: no injury, minor injury, major 11 injury and fatal injury crashes). Given the consequences of road traffic crashes and policy 12 implications, it is a common practice among safety researcher community to develop independent 13 crash prediction models for different injury severity levels. However, for the same observation 14 record, it might be beneficial to evaluate the impact of exogenous variables in a framework that 15 directly relates a single exogenous variable to all severity count variables simultaneously. Such a 16 framework would allow us to make inferences based on a single model. To that extent, in this 17 current research effort, as opposed to modeling the number of crashes, we adopt a fractional split 18 modeling approach to study the fraction of crashes by each severity level. Specifically, we employ 19 OPFS models for examining pedestrian and bicycle crash proportions by severity levels⁵. The 20 estimation results of these models are presented in the following sections.

⁴ The econometric framework of NB model is presented in APPENDIX B.

⁵ The econometric framework of OPFS model is presented in APPENDIX C.

1 Crash Count Models

Table 5 presents the estimation results of the count models. The pedestrian crash count model
results are presented in 2nd and 3rd columns while the bicycle crash count model results are
presented in 4th and 5th columns.

5 The model results indicate that both pedestrian and bicycle crashes are positively 6 associated with population density (see (Bhowmik et al., 2019b) for similar results) i.e. zones with 7 higher population density are likely to experience more pedestrian and bicycle crashes (as 8 expected). The results, surprisingly, indicate a reduced crash risk for both pedestrian and bicyclists 9 with higher proportion of population aged 65 and more. One reasonable explanation can be attributed to the fact that senior people are more experienced which eventually protects them from 10 11 colliding with the motor vehicles. Similar results are also observed in the study of Saha et al. 12 (2018). Several roadway and traffic attributes are found to be significant determinants of non-13 motorist crashes at the zonal level. The results associated with traffic signal density reveal that an 14 increase in traffic signal density in a zone increases the likelihood of both pedestrian and bicycle 15 crashes (Nashad et al., 2016). The result is expected as the density of traffic intersections increases 16 potential conflicts between vehicles and non-motorist road users are likely to increase. Higher 17 proportion of arterial roads results in higher pedestrian and bicycle crash risks (Bhowmik et al., 18 2019a; Nashad et al., 2016). At the same time, higher proportion of local roads is found to have 19 negative impact of bicycle crash risk. From Table 5, we can see that the likelihood of pedestrian 20 crash is higher in zones with longer sidewalk length. This is intuitive as sidewalk lengths are 21 reflections of pedestrian access. For instance, zones with higher length of sidewalk are likely to 22 have higher level of pedestrian activities (Lu et al., 2018) which eventually results in more 23 pedestrian crashes (see Cai et al., 2016; Nashad et al; ,2016 for similar results). Similarly, TAZs

1 with longer bicycle lane length have an increased likelihood of bicycle crashes. The length of zonal 2 level bus lane result reveals an increasing likelihood of bicycle crash risk. An increase in zonal 3 AADT increases the likelihood of both pedestrian and bicycle crashes at the TAZ level. The result 4 in bicycle crash model suggests that zones with higher truck AADT have a decreased likelihood 5 of bicycle crashes possibly because bicycling is less prevalent in these zones (see Cai et al., 2016) 6 for similar results). Trucks usually travel on the highways in their majority part of the trips. As a 7 result, zones with higher truck volume are basically the zones with major highways which explain 8 the reduced likelihood of bicycle crashes in those zones.

9 With respect to built environment, the estimation results of pedestrian crash risk model 10 reveal that higher number of educational centers, transit hubs, restaurants and park/recreational centers result in higher pedestrian crash risk at zonal level. On the other hand, bicycle crash risk is 11 12 positively associated with higher number of commercial centers, financial centers, restaurants and 13 hospitals. Several land-use characteristics are found to be significant determinants of pedestrian 14 and bicycle crash risks. Pedestrian and bicycle crash risks increase with increasing urbanized and 15 residential area. In the bicycle crash risk model, recreational area is found to decrease the 16 likelihood of zonal level bicycle crash risk. TAZs with higher land use mix increase the propensity 17 of both pedestrian and bicycle crashes.

The major objective of the current study is to integrate the non-motorist trip exposure as exogenous variable in developing aggregate level crash risk models. We use total daily trip demand of pedestrian and bicycle (as explained in section 4.2) as exogenous variables in pedestrian and bicycle crash risk models, respectively. We consider different functional forms of pedestrian and bicycle exposure measures in estimating NB models and the functional form that provides the best fit are considered in the final specifications. With respect to pedestrian crash risk model, pedestrian

1 demand per household at a zonal level provides the best data fit and hence is considered in our 2 final pedestrian crash risk model. From Table 5, we can see that higher number of pedestrians per 3 household is likely to decrease the risk of pedestrian-motor vehicle crashes (Miranda-Moreno et 4 al. 2011). The result perhaps is indicating that the motorists are more likely to exhibit safer driving 5 behavior in the presence of higher volumes of pedestrians (Jacobsen, 2015; Schepers, 2012). With 6 respect to bicycle crash risk model, bicycle exposure measures are found to have significant impact 7 on zonal level bicycle-motor vehicle crash risk. The estimation result of exposure measure in 8 bicycle crash risk model reveal that higher bicyclists trip demand at a zonal level increases the risk 9 of bicycle crashes. The reader would note that even after controlling for trip exposure variables, 10 several variables from other variable categories still serve as proxies for exposure.

11

12 Crash Proportions by Severity Models

Table 6 presents the estimation results of the crash proportions by severity models. The pedestrian crash proportions by severity model results are presented in 2nd and 3rd columns and bicycle crash proportions by severity model results are presented in 4th and 5th columns of Table 6. These models are estimated by using OPFS framework. The effects of exogenous variables in model specifications for both pedestrian and bicycle crash proportions by severity models are discussed in this section. In OPFS models, the positive (negative) coefficient corresponds to increased (decreased) proportion for severe injury categories.

With respect to sociodemographic characteristics, the estimates indicate that population density results in lower likelihood of severe injury proportions for both pedestrian and bicycle crashes. Proportion of 22-29 years old group of population has negative impact on proportion of pedestrian crash severity outcomes implying a reduced likelihood of more severe pedestrian crashes (Yasmin et al., 2014). Relative to older people, young individuals are more flexible in handling any sudden activity which in turn protects them from enduring severe injuries (see Saha et al., 2018 for similar results). The OPFS model results for bicycle reveal a higher proportion of severe crash outcomes for zones with higher number of flashing beacon signs and higher number of school signals. As expected, availability of bike lane is found to reduce the likelihood of less severe bicycle crash proportions. With respect to traffic attributes, higher vehicles miles travelled (VMT) is positively associated with more severe crash proportions in the model for pedestrians.

8 The pedestrian severity model reveals that the proportion of severe crashes is lower in 9 TAZs with higher number of commercial centers (Moudon et al., 2011; Aziz et al., 2013). Higher number of hospitals is associated with lower likelihood of severe crash proportion in OPFS model 10 11 for bicycle crashes. At the same time, the OPFS model results reveal that higher number of park 12 and recreational centers increases the possibility of higher proportions of severe bicycle crash 13 outcomes. From both pedestrian and bicycle models, we find that the possibility of more severe 14 crashes decreases with increasing share of urbanized area of a TAZ (Boufous et al., 2012). 15 Residential area is found to be a significant determinant of bicycle crash proportion by severity 16 outcomes. The estimate for residential area has a positive coefficient in bicycle crash severity 17 model suggesting that proportion of severe bicycle crashes increases with increasing zonal level 18 residential area. Similar results are also observed in the study of Bhat et al. (2017).

19 The non-motorist exposure measures generated (as presented in Section 4.2) are used as 20 exogenous variables in evaluating zonal level pedestrian and bicycle crash severity proportions. 21 With respect to, pedestrian crash severity proportion model, higher pedestrian demand per 22 household at a zonal level decreases the propensity of higher proportion of severe crashes. With 23 respect to bicycle crash severity proportion model, increase in bicycle trip demand per household at a zonal level decreases the risk of higher proportion of severe bicycle-motor vehicle crashes.
The reader would note that the impact of exposure is contrasting in the count and severity models
highlighting how increased exposure is likely to increase the number of crashes but at the same
time contributing to reduced proportion of severe crashes.

5

6 **4.4 Predictive Performance Evaluation**

7 In order to demonstrate the predictive performance of the estimated exposure and safety (count 8 and severity) models, a validation exercise is also carried out. The most common approach of 9 performing validation exercise for aggregate level model is to evaluate the in-sample predictive measures. Therefore, to evaluate the predictive performance of the estimated eight models, we 10 11 compute the predicted count/proportion events and compared those with the observed values 12 across different zones. For demand models, to evaluate the in-sample goodness-of-fit measures, 13 we computed the predicted count events for both zero and non-zero events and compared those 14 with the observed values. For crash frequency models, we compute mean prediction bias (MPB) 15 and mean absolute deviation (MAD). For crash proportion models, we compute mean absolute 16 percentage error (MAPE) and root mean square error (RMSE). These fit measures quantify the 17 error associated with model predictions and the model with lower fit measures provides better 18 predictions of the observed data. These measures are computed as:

$$MPB = \frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

$$MAD = \frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
(1)

$$MAPE = \sum_{i=1}^{n} \left| \frac{\hat{y}_{i} - y_{i}}{y_{i}} \right|$$
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{n}}$$

1 where, \hat{y}_i and y_i are the predicted and observed values for event *i* (*i* be the index for event 2 (*i* = 1,2,3,...,*N*)) and *n* is the number of events. These measures are presented in Table 7. From 3 Table 7 we can see that the error between observed and predicted values across all events of 4 different models are quite small (ranging from -6.452% to 0.451%). Hence, we can conclude that 5 the predictive performance of the estimated models is reasonable for all eight estimated models.

6

7 5. IMPLICATIONS

8

9 **5.1 Policy Scenario Analysis**

10 The parameter effects of exogenous variables as presented in Sections 4 do not directly provide 11 the magnitude of the effects on zonal level non-motorists demand and safety and therefore cannot 12 be directly employed for policy scenario analysis. For policy scenario analysis, we compute 13 aggregate level "elasticity effects" of exogenous variables both in the trip demand models and 14 safety models (see Eluru and Bhat 2007 for a discussion on the methodology for computing 15 elasticities). We investigate the effect as percentage change in the expected change in zonal 16 demand, change in zonal crash counts, and change in proportions by severity levels to the change 17 in exogenous variables for the study region. In the current study context, we perform policy 18 analysis for different scenario as follows:

1	\triangleright	Scenario 1: 50% reduction in traffic volume within 2 miles buffer area of different central
2		business district (CBD).
3		Scenario 2: 30% reduction in traffic volume within 2 miles buffer area of different central
4		business district (CBD).
5	\triangleright	Scenario 3: 15% reduction in traffic volume within 4 miles buffer area of different central
6		business district (CBD).
7	\blacktriangleright	Scenario 4: 5% reduction in traffic volume within 6 miles buffer area of different central
8		business district (CBD).
9	\triangleright	Scenario 5: All zones have sidewalk and the new proposed sidewalk length =
10		$\frac{(TAZ \ area)^{0.5}}{2} \ meter.$
11	\triangleright	Scenario 6: 50% increase in existing sidewalk length.
12	\triangleright	Scenario 7: 15% reduction in zonal average maximum speed.
13	\triangleright	Scenario 8: 25% reduction in zonal average maximum speed.
14	\triangleright	Scenario 9: 15% reduction in zonal proportion of 3+lane road.
15	\triangleright	Scenario 10: 25% reduction in zonal proportion of 3+lane road.
16		
17		These scenarios are evaluated for all zones and for both pedestrian and bicycle group of
18	road u	sers separately. For the buffer area around CBD scenarios, we consider multiple CBDs in
19	the Ce	entral Florida region including Orlando, Sanford, Lakeland, Kissemme, Deland, Ocala,
20	Melbo	urne, Palm Bay, Leesburg, Daytona Beach and Port Orange of Central Florida region. The
21	spatial	representation of the considered CBD locations is shown in Figure 1. By performing policy
22	scenar	io analysis for exposure and safety components, we ensure that the updated demand matrices
23	for eac	ch scenario is produced and employed in generating exposure measures for non-motorist

1 travel as well as vehicular volumes on roadways. With these new exposure measures, the safety 2 models are used to generate estimates of scenario-based crash and severity proportions and the 3 change in safety situation. By following the simulation procedure, it is possible to predict demand 4 matrices for future year and in turn predict safety by incorporating exposure measures. A 5 comparison across scenarios would allow us to identify beneficial changes to existing 6 infrastructure for improving non-motorist road user safety. Policy scenario analysis for non-7 motorist travel demand and safety components are presented in Table 8. We generated elasticity 8 effects for all severity levels in crash proportion by severity models. However, we present the 9 elasticity effects only for the highest injury severity category (fatal crash proportions). The 10 following observations can be made based on the elasticity effects presented in Table 8.

11 With respect to demand component, we can observe that - First, decreasing vehicular traffic 12 volume near CBD locations has greater effect on pedestrian demand than bicycle demand. For 13 both modes, we can observe from the table that higher level of non-motorist activities can be 14 attained by restricting vehicular traffic; greater the restrictions, higher the level of non-motorist 15 demand. Second, increasing sidewalk facilities are likely to attract more non-motorists, but for the 16 hypothetical scenario 5, the demand for pedestrian is likely to get reduced. Third, the reduction in 17 speed has greater impact on increasing pedestrian demand. However, for bicycle, the variable has 18 no impact as it was found insignificant in bicycle demand models. Fourth, restriction in number of 19 traffic lanes are likely to have similar impact and as we can see from Table 8, it increases non-20 motorists demand.

21 <u>With respect to crash count component</u>, we can observe that - First, decreasing vehicular 22 traffic volume near CBD locations are likely to reduce pedestrian crashes with greater impact 23 within the vicinity of CBD. However, bicycle crashes are likely to increase by about 3%. But

number of bicycle-motor vehicle crashes are likely to decrease within the vicinity of CBD with greater reduction in vehicular volume. Second, the hypothetical scenario of sidewalk length shows that providing walk facilities has the potential to improve pedestrian safety. On the other hand, bicycle crashes are likely to be adversely affected by increasing sidewalk length – perhaps indicating greater exposure. Third, reduction in speed and restrictions in traffic lanes decreases pedestrian crashes. On the other hand, restrictions in traffic lanes bicycle crashes by about 4%.

8 <u>With respect to crash severity by proportions component</u>, we can observe that - First, non-9 motorist friendly facilities are likely to reduce proportion of fatal crashes for both pedestrians and 10 bicyclists. However, the impact on pedestrian mode is much higher than the impact on bicycle 11 mode. Second, the decrease in pedestrian fatal crash severity proportions are about 1% for increase 12 in sidewalk length, reducing speed and restricting traffic lanes. The contribution of these measures 13 on bicycle crash severity are less pronounced relative to pedestrian modes.

14 It is a well-known fact that non-motorist safety tend to decrease with increasing non-15 motorist exposure, and only after a certain level of exposure (when traffic become familiar with 16 higher number of non-motorists), the safety tends to improve. From the policy analysis, we can 17 see that non-motorist friendly infrastructure has mixed effect on non-motorist safety in current 18 study context. Therefore, it is imperative that policy implications for improving non-motorist 19 safety should be identified by considering all known exogenous elements in identifying the 20 appropriate tools. In general, providing more walking and bicycle friendly facilities are likely to 21 encourage more people to use non-motorized mode and in targeted zones these measures are likely 22 to improve non-motorist safety.

23

5.2 Predictions for Future Year

2 In order to demonstrate the implications from the estimated demand models, we also generate the 3 predicted demand matrices for the year 2015. Specifically, we have estimated predicted trip origin 4 demand, predicted trip destination demand and predicted total trip demand for the year 2015. In 5 generating demand matrices for the year 2015, we consider the increase in weight based on the 6 change in population at a zonal level. These matrices are presented in Table 9 at the county level 7 (the matrices are generated at the zonal-level but are shown at the county level for presentation 8 purposes). From Table 9 we can see that overall bicycle demand has increased from 2010 to 2015, 9 but total pedestrian demand has decreased over the same period. Similar matrices can be generated 10 for any other year. These generated demand matrices can be further be used as non-motorist 11 exposure measures in the safety model predictions for the year 2015. We employ the predicted 12 results for the year 2015 to plot the spatial distribution of predicted crash counts and predicted 13 crash counts by severity levels for both non-motorist road user groups. These plots are presented 14 in Figure 5 (5(a) - 5(c)). From the spatial representation, we can see that high crash risk zones and 15 zones with higher proportion of severe crashes are dispersed throughout the state.

16

17 6. CONCLUSION

In developing non-motorist crash prediction models safety researchers have employed land use and urban form variables as surrogate for exposure information (such as pedestrian, bicyclist volumes and vehicular traffic). The quality of these crash prediction models is affected by the lack of "true" non-motorist exposure data. Modeling with high-resolution data frameworks such as activity-based or trip-based approach could be pursued for evaluating planning level non-motorist demand. However, running a travel demand model system to generate demand inputs for non1 motorist safety evaluation is cumbersome and resource intensive. The current study focused on 2 addressing this drawback by developing an integrated non-motorist trip demand and crash 3 prediction framework for mobility and safety analysis. Towards this end, we proposed a three-step 4 framework to evaluate non-motorists safety: (1) develop aggregate level models for non-motorist 5 trip generation and attraction at a zonal level, (2) develop non-motorists trip exposure matrices for 6 safety evaluation and (3) develop aggregate level non-motorists crash frequency and severity 7 proportion models.

8 The three-step approach entailed estimation of eight different models for pedestrian and 9 bicyclist road user groups – two trip attraction models, two trip generation models, two crash count 10 models and two crash proportions by severity models. The model estimation was based on National 11 Household Travel Survey (NHTS) Florida Add-on and Florida Department of Transportation non-12 motorist crash data. The integrated framework was employed for policy scenario analysis. The 13 results provided useful insights on mobility and safety changes associated with these hypothetical 14 scenarios.

To be sure, our study is not without limitations. We evaluated non-motorist demand by using NHTS database at an aggregate level which is not readily transferable for developing microlevel model. It might be interesting to generate micro-level trip demand model to identify nonmotorist exposure at a corridor level. It might also be useful to conduct a pooled model estimation with random effects for pedestrians and bicyclists to improve model estimation efficiency.

20

21 ACKNOWLEDGEMENT

The authors would like to thank Florida Department of Transportation (FDOT) for providing additional funds as well as data access to support the research. We also thank SAFER-SIM

- 1 University Transportation Center for partially funding the research effort. We are grateful to S4A
- 2 for providing the crash data used in the research.
- 3

4 **REFERENCES**

- Abdel-Aty, M., Lee, J., Siddiqui, C., & Choi, K., (2013). Geographical unit based analysis in the
 context of transportation safety planning. Transportation Research Part A: Policy and
 Practice, 49, 62-75.
- Aziz, H. A., Ukkusuri, S. V., & Hasan, S. (2013). Exploring the determinants of pedestrian-vehicle
 crash severity in New York City. Accident Analysis & Prevention, 50, 1298-1309.
- Bao, J., Liu, P., Yu, H., & Xu, C. (2017). Incorporating twitter-based human activity information
 in spatial analysis of crashes in urban areas. Accident Analysis & Prevention, 106, 358 369.
- Bhat, C. R., Astroza, S., & Lavieri, P. S. (2017). A new spatial and flexible multivariate random coefficients model for the analysis of pedestrian injury counts by severity level. Analytic
 methods in accident research, 16, 1-22.
- Bhowmik, T., Rahman, M., Yasmin, S., & Eluru, N. (2019a). Alternative Model Structures for
 Multivariate Crash Frequency Analysis: Comparing Simulation-based Multivariate Model
 with Copula-based Multivariate Model (No. 19-05507). Presented at the 98th Transportation
 Research Board (TRB) Annual Meeting, Washington D.C., 2019.
- Bhowmik, T., Yasmin, S., & Eluru, N. (2018). A joint econometric approach for modeling crash
 counts by collision type. Analytic methods in accident research, 19, 16-32.
- Bhowmik, T., Yasmin, S., & Eluru, N. (2019b). Do we need multivariate modeling approaches to
 model crash frequency by crash types? A panel mixed approach to modeling crash
 frequency by crash types. Analytic Methods in Accident Research, 24, 100107.
- Bhowmik, T., Yasmin, S., & Eluru, N. (2019c). A multilevel generalized ordered probit fractional
 split model for analyzing vehicle speed. Analytic methods in accident research, 21, 13-31.
- Bouaoun, L., Haddak, M. M., & Amoros, E., (2015). Road crash fatality rates in France: a
 comparison of road user types, taking account of travel practices. Accident Analysis &
 Prevention, 75, 217-225.
- Boufous, S., de Rome, L., Senserrick, T., & Ivers, R., (2012). Risk factors for severe injury in
 cyclists involved in traffic crashes in Victoria, Australia. Accident Analysis & Prevention,
 49, 404-409.
- Cai, Q., Abdel-Aty, M., & Castro, S. (2020). Explore effects of bicycle facilities and exposure on
 bicycle safety at intersections. International Journal of Sustainable Transportation, 1-12.
- Cai, Q., Lee, J., Eluru, N., Abdel-Aty, M., (2016). Macro-level pedestrian and bicycle crash
 analysis: Incorporating spatial spillover effects in dual state count models. Accident
 Analysis & Prevention 93, 14-22.
- Cameron, A. C., Trivedi, P. K., (1998). Regression analysis of count data. New York: Cambridge
 University Press.
- 40 Cervero, R., Duncan, M., (2003). Walking, bicycling, and urban landscapes: Evidence from the
 41 san francisco bay area. American journal of public health 93 (9), 1478-1483.

- Chakravarthy, B., Anderson, C. L., Ludlow, J., Lotfipour, S., & Vaca, F. E., (2010). The
 relationship of pedestrian injuries to socioeconomic characteristics in a large Southern
 California County. Traffic injury prevention, 11(5), 508-513.
- Chen, P., Zhou, J., & Sun, F., (2017). Built environment determinants of bicycle volume: A
 longitudinal analysis. Journal of Transport and Land Use, 10(1), 655-674.
- 6 Chu, X. (2003). The fatality risk of walking in America: A time-based comparative approach. In
 7 Walk21 conference: Health equity and the environment. Portland, Oregon.
- 8 Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J., (2016). Representing pedestrian
 9 activity in travel demand models: Framework and application. Journal of transport
 10 geography, 52, 111-122.
- Clifton, K., Burnier, C., Schneider, R., Huang, S., & Kang, M. W., (2008). Pedestrian demand
 model for evaluating pedestrian risk exposure. University of Maryland.
- Cottrill, C. D., & Thakuriah, P. V., (2010). Evaluating pedestrian crashes in areas with high low income or minority populations. Accident Analysis & Prevention, 42(6), 1718-1728.
- Dhanani, A., Tarkhanyan, L., & Vaughan, L., (2017). Estimating pedestrian demand for active
 transport evaluation and planning. Transportation research part A: policy and practice, 103,
 54-69.
- Ding, H., Sze, N. N., Li, H., & Guo, Y. (2020). Roles of infrastructure and land use in bicycle
 crash exposure and frequency: a case study using Greater London bike sharing data.
 Accident Analysis & Prevention, 144, 105652.
- Eluru, N., Bhat, C. R., & Hensher, D. A., (2008). A mixed generalized ordered response model for
 examining pedestrian and bicyclist injury severity level in traffic crashes. Accident
 Analysis & Prevention, 40(3), 1033-1054.
- Eluru, N., Bhat, C.R., (2007). A joint econometric analysis of seat belt use and crash-related injury
 severity. Accident Analysis & Prevention 39 (5), 1037-1049.
- Elvik, R., & Bjørnskau, T., (2017). Safety-in-numbers: a systematic review and meta-analysis of
 evidence. Safety science, 92, 274-282.
- Elvik, R., (2009). The non-linearity of risk and the promotion of environmentally sustainable
 transport. Accident Analysis & Prevention, 41(4), 849-855.
- Ercolano, J., Olson, J., Spring, D., (1997). Sketch-plan method for estimating pedestrian traffic for
 central business districts and suburban growth corridors. Transportation Research Record:
 Journal of the Transportation Research Board (1578), 38-47.
- Ermagun, A., Lindsey, G. and Loh, T.H., (2018a). Urban trails and demand response to weather
 variations. Transportation Research Part D: Transport and Environment, 63,404-420.
- Ermagun, A., Lindsey, G. and Loh, T.H., (2018b). Bicycle, pedestrian, and mixed-mode trail
 traffic: A performance assessment of demand models. Landscape and Urban Planning, 177,
 92-102.
- Fagnant, D.J. and Kockelman, K., (2016). A direct-demand model for bicycle counts: The impacts
 of level of service and other factors. Environment and Planning B: Planning and Design,
 43(1), 93-107.
- Fatality in Collisions with Motor Vehicles, a Social Ecological Study of State Routes and
 City Streets in King County, Washington. Accident Analysis & Prevention 43 (1), 11-24.
- Fournier, N., Christofa, E. and Knodler Jr, M.A., (2017). A sinusoidal model for seasonal bicycle
 demand estimation. Transportation research part D: transport and environment, 50, 154 169.

- Guo, J., Bhat, C., Copperman, R., (2007). Effect of the built environment on motorized and
 nonmotorized trip making: Substitutive, complementary, or synergistic? Transportation
 Research Record: Journal of the Transportation Research Board 2010(1), 1-11.
- Guo, Y., Osama, A., & Sayed, T. (2018). A cross-comparison of different techniques for modeling
 macro-level cyclist crashes. Accident Analysis & Prevention, 113, 38-46.
- Hankey, S., & Lindsey, G. (2016). Facility-demand models of peak period pedestrian and bicycle
 traffic: comparison of fully specified and reduced-form models. Transportation research
 record, 2586(1), 48-58.
- Hankey, S., Lindsey, G., & Marshall, J. D. (2017). Population-level exposure to particulate air
 pollution during active travel: planning for low-exposure, health-promoting cities.
 Environmental health perspectives, 125(4), 527-534.
- Hankey, S., Lindsey, G., Wang, X., Borah, J., Hoff, K., Utecht, B. and Xu, Z., (2012). Estimating
 use of non-motorized infrastructure: Models of bicycle and pedestrian traffic in
 Minneapolis, MN. Landscape and Urban Planning, 107(3), 307-316.
- Hewawasam, C., Bandara, S., & Wirasinghe, S. C. (2014). Development of walking trip rates for
 different land uses.
- Heydari, S., Miranda-Moreno, L., & Hickford, A. J. (2020). On the causal effect of proximity to
 school on pedestrian safety at signalized intersections: a heterogeneous endogenous
 econometric model. Analytic methods in accident research, 26, 100115.
- Jacobsen, P. L. (2015). Safety in numbers: more walkers and bicyclists, safer walking and
 bicycling. Injury prevention, 21(4), 271-275.Jamali, A., & Wang, Y. (2017). Estimating
 pedestrian exposure for small urban and rural areas. Transportation research record,
 2661(1), 84-94.
- Jones, M., Ryan, S., Donlon, J., Ledbetter, L., Ragland, D., Arnold, L., (2010). Measuring bicycle
 and pedestrian activity in san diego county and its relationship to land use, transportation,
 safety, and facility type. Berkeley: Institute of Transportation Studies-UC Berkeley Traffic
 Safety Center.
- Kamel, M. B., & Sayed, T. (2020). Cyclist-vehicle crash modeling with measurement error in
 traffic exposure. Accident Analysis & Prevention, 144, 105612.
- Kerr, Z.Y., Rodriguez, D.A., Evenson, K.R. and Aytur, S.A., (2013). Pedestrian and bicycle plans
 and the incidence of crash-related injuries. Accident Analysis & Prevention, 50, 1252 1258.
- Kraemer, J.D., Zaccaro, H.N., Roffenbender, J.S., Baig, S.A., Graves, M.E., Hauler, K.J., Hussain,
 A.N. and Mulroy, F.E., (2015). Assessing the potential for bias in direct observation of
 adult commuter cycling and helmet use. Injury prevention, 21(1), 42-46.
- Kwayu, K. M., Kwigizile, V., & Oh, J. S. (2020). Development of systemwide pedestrian safety
 performance function using stratified random sampling and a proxy measure of pedestrian
 exposure. International journal of injury control and safety promotion, 1-12.
- Lam, W.W., Loo, B.P. and Yao, S., (2013). Towards exposure-based time-space pedestrian crash
 analysis in facing the challenges of ageing societies in Asia. Asian Geographer, 30(2), 105 125.
- Lam, W.W., Yao, S. and Loo, B.P., (2014). Pedestrian exposure measures: a time-space framework. Travel behaviour and society, 1(1), 22-30.
- Lee, C. and Abdel-Aty, M., (2005). Comprehensive analysis of vehicle–pedestrian crashes at
 intersections in Florida. Accident Analysis & Prevention, 37(4), 775-786.

- Lee, J., Abdel-Aty, M., & Jiang, X. (2015). Multivariate crash modeling for motor vehicle and non-motorized modes at the macroscopic level. Accident Analysis & Prevention, 78, 146-154.
- Lee, J., Abdel-Aty, M., & Shah, I. (2019). Evaluation of surrogate measures for pedestrian trips at
 intersections and crash modeling. Accident Analysis & Prevention, 130, 91-98.
- Lee, J., Abdel-Aty, M., Cai, Q., Wang, L., & Huang, H. (2018a). Integrated modeling approach
 for non-motorized mode trips and fatal crashes in the framework of transportation safety
 planning. Transportation research record, 2672(32), 49-60.
- Lee, J., Yasmin, S., Eluru, N., Abdel-Aty, M., & Cai, Q. (2018b). Analysis of crash proportion by
 vehicle type at traffic analysis zone level: A mixed fractional split multinomial logit
 modeling approach with spatial effects. Accident Analysis & Prevention, 111, 12-22.
- Li, H., Wu, D., Graham, D. J., & Sze, N. N. (2020). Comparison of exposure in pedestrian crash
 analyses: A study based on zonal origin-destination survey data. Safety science, 131,
 104926.
- Lu, T., Mondschein, A., Buehler, R. and Hankey, S., (2018). Adding temporal information to
 direct-demand models: Hourly estimation of bicycle and pedestrian traffic in Blacksburg,
 VA. Transportation Research Part D: Transport and Environment, 63, 244-260.
- Matlick, J. M. (1998). If we build it, will they come?. Washington State Department of
 Transportation.
- Miranda-Moreno, L. F., & Fernandes, D. (2011). Modeling of pedestrian activity at signalized
 intersections: land use, urban form, weather, and spatiotemporal patterns. Transportation
 research record, 2264(1), 74-82.
- Miranda-Moreno, L. F., Morency, P., & El-Geneidy, A. M. (2011). The link between built
 environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized
 intersections. Accident Analysis & Prevention, 43(5), 1624-1634.
- Molino, J. A., Kennedy, J. F., Inge, P., Bertola, M. A., Beuse, P. A., Fowler, N. L., ... & Do, A.
 (2012). A Distance-Based Method to Estimate Annual Pedestrian and Bicyclist Exposure
 in an Urban Environment (No. FHWA-HRT-11-043 de). United States. Federal Highway
 Administration. Office of Safety Research and Development.
- 30 Moudon, A. V., Lin, L., Jiao, J., Hurvitz, P., Reeves, P., (2011). The Risk of Pedestrian Injury and
- Nashad, T., Yasmin, S., Eluru, N., Lee, J., & Abdel-Aty, M. A. (2016). Joint modeling of
 pedestrian and bicycle crashes: copula-based approach. Transportation Research Record:
 Journal of the Transportation Research Board, (2601), 119-127.
- NHTSA, 2015. Traffic Safety Facts 2015: A Compilation of Motor Vehicle Crash Data
 from the Fatality Analysis Reporting System and the General Estimates System.
 Publication DOT HS 812 139. National Highway Traffic Safety Administration
 (NHTSA), U.S. Department of Transportation.
- Nordback, K., Sellinger, M., Phillips, T., (2017). Estimating Walking and Bicycling at the State
 Level. doi:10.15760/trec.163
- 40 Porter, C., Suhrbier, J., & Schwartz, W. (1999). Forecasting bicycle and pedestrian travel: State of
 41 the practice and research needs. Transportation Research Record, 1674(1), 94-101.
- Pulugurtha, S. S., & Repaka, S. R. (2008). Assessment of models to measure pedestrian activity at
 signalized intersections. Transportation Research Record, 2073(1), 39-48.
- Raford, N., Ragland, D.R., (2004). Space Syntax : An Innovative Pedestrian Volume Modeling
 Tool for Pedestrian Safety. Transportation Research Record: Journal of the Transportation
 Research Board 1878, 66–74.

- Reardon, T. G., Wallace, E., & Brown, C. M. (2017). Network Utility Scores: A New Approach to Estimating Bicycle and Pedestrian Latent Demand (No. 17-06644).
- Robinson, D.L., (2005). Safety in numbers in australia: More walkers and bicyclists, safer walking
 and bicycling. Health promotion journal of Australia 16 (1), 47-51.
- Saha, D., Alluri, P., Gan, A., & Wu, W. (2018). Spatial analysis of macro-level bicycle crashes
 using the class of conditional autoregressive models. Accident Analysis & Prevention, 118, 166-177.)
- Schepers, P., (2012). Does more cycling also reduce the risk of single-bicycle crashes? Injury
 prevention 18 (4), 240-245.
- Schneider, R. J., Arnold, L. S., & Ragland, D. R. (2009a). Methodology for counting pedestrians
 at intersections: use of automated counters to extrapolate weekly volumes from short
 manual counts. Transportation research record, 2140(1), 1-12.
- Schneider, R. J., Arnold, L. S., & Ragland, D. R. (2009b). Pilot model for estimating pedestrian
 intersection crossing volumes. Transportation research record, 2140(1), 13-26.
- Schneider, R. J., Henry, T., Mitman, M. F., Stonehill, L., & Koehler, J. (2012). Development and
 application of volume model for pedestrian intersections in San Francisco, California.
 Transportation research record, 2299(1), 65-78.
- Siddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and
 bicycle crashes. Accident Analysis & Prevention, 45, 382-391.
- Strauss, J., Miranda-Moreno, L.F., Morency, P., (2013). Cyclist activity and injury risk analysis at
 signalized intersections: A Bayesian modelling approach. Accident Analysis &
 Prevention.59, 9–17.
- Strauss, J., Miranda-Moreno, L.F., Morency, P., (2015). Mapping cyclist activity and injury risk
 in a network combining smartphone GPS data and bicycle counts. Accident Analysis &
 Prevention.83, 132–142.
- Su, J., Sze, N. N., & Bai, L. (2020). A joint probability model for pedestrian crashes at macroscopic
 level: roles of environment, traffic, and population characteristics. Accident Analysis &
 Prevention, 150, 105898.
- Sze, N. N., Su, J., & Bai, L. (2019). Exposure to pedestrian crash based on household survey data:
 effect of trip purpose. Accident Analysis & Prevention, 128, 17-24.
- Tabeshian, M., & Kattan, L. (2014). Modeling nonmotorized travel demand at intersections in
 Calgary, Canada: use of traffic counts and Geographic Information System data.
 Transportation Research Record, 2430(1), 38-46.
- Tian, G. and Ewing, R., (2017). A walk trip generation model for Portland, OR. Transportation
 Research Part D: Transport and Environment, 52, 340-353.
- Ukkusuri, S., Hasan, S., Aziz, H., (2011). Random Parameter Model Used to Explain Effects of
 Built-Environment Characteristics on Pedestrian Crash Frequency. Transportation
 Research Record: Journal of the Transportation Research Board 2237, 98–106.
- Ukkusuri, S., Miranda-Moreno, L.F., Ramadurai, G. and Isa-Tavarez, J., (2012). The role of built
 environment on pedestrian crash frequency. Safety science, 50(4), 1141-1151.
- Wang, J., Hankey, S., Wu, X., & Lindsey, G. (2016). Monitoring and modeling of urban trail
 traffic: validation of direct demand models in Minneapolis, Minnesota, and Columbus,
 Ohio. Transportation Research Record, 2593(1), 47-59.
- Wang, J., Huang, H., & Zeng, Q. (2017). The effect of zonal factors in estimating crash risks by
 transportation modes: Motor vehicle, bicycle and pedestrian. Accident Analysis &
 Prevention, 98, 223-231.

- Wang, X., Lindsey, G., Hankey, S., & Hoff, K. (2014). Estimating mixed-mode urban trail traffic
 using negative binomial regression models. Journal of Urban Planning and Development,
 140(1), 04013006.
- Wei, F., Lovegrove, G., (2013). An empirical tool to evaluate the safety of cyclists: Community
 based, macro-level collision prediction models using negative binomial regression.
 Accident Analysis & Prevention.61, 129–137.
- Wier, M., Weintraub, J., Humphreys, E.H., Seto, E. and Bhatia, R., (2009). An area-level model
 of vehicle-pedestrian injury collisions with implications for land use and transportation
 planning. Accident Analysis & Prevention, 41(1), 137-145.
- Xie, S. Q., Dong, N., Wong, S. C., Huang, H., & Xu, P. (2018). Bayesian approach to model
 pedestrian crashes at signalized intersections with measurement errors in exposure.
 Accident Analysis & Prevention, 121, 285-294.
- Xu, P., Xie, S., Dong, N., Wong, S. C., & Huang, H. (2019). Rethinking safety in numbers: are
 intersections with more crossing pedestrians really safer?. Injury prevention, 25(1), 20-25.
- Yao, S., Loo, B.P.Y., (2016). Safety in numbers for cyclists beyond national-level and city-level
 data: A study on the non-linearity of risk within the city of Hong Kong. Injury Prevention.
 22 (6), 379–385.
- Yao, S., Loo, B.P.Y., Lam, W.W.Y., (2015). Measures of activity-based pedestrian exposure to
 the risk of vehicle-pedestrian collisions: Space-time path vs. potential path tree methods.
 Accident Analysis & Prevention.75, 320–332.
- Yasmin, S., & Eluru, N. (2018). A joint econometric framework for modeling crash counts by
 severity. Transportmetrica A: transport science, 14(3), 230-255.
- Yasmin, S., Eluru, N., & Ukkusuri, S. V., (2014). Alternative ordered response frameworks for
 examining pedestrian injury severity in New York City. Journal of Transportation Safety
 & Security, 6(4), 275-300.
- Yasmin, S., Eluru, N., Lee, J., & Abdel-Aty, M. (2016). Ordered fractional split approach for
 aggregate injury severity modeling. Transportation Research Record, 2583(1), 119-126.

1 FIGURE 1 Considered Central Business District (CBD) Locations

1 FIGURE 2 Zones with pedestrian and bicycle O-D demand for the year 2009

FIGURE 3 Pedestrian crashes (total and by different injury severity) for the year 2010

FIGURE 4 Bicycle crashes (total and by different injury severity) for the year 2010

1 FIGURE 5 (a) Spatial Distribution of Expected Pedestrian and Bicycle Crash Counts for the year 2015

4 FIGURE 5 (b) Spatial Distribution of Predicted Fraction of Pedestrian Crashes by Severity levels for the year 2015

18 FIGURE 5 (c) Spatial Distribution of Predicted Fraction of Bicycle Crashes by Severity levels for the year 2015

1 TABLE 1 Summary of Earlier Research on Non-motorized Demand Model

					v	Ind ariabl	lepende es Cons	ent sidered				
Studies	Unit of Analysis	Spatial Unit	Temporal unit	Methodological Approach	Socio- demographic	Land-use	Built Environment	Roadway/ Infrastructure	Weather			
	Traditional Demand Model											
(Pulugurtha and Repaka, 2008)	Pedestrian	Intersection	1-hour	Multiple regression	Yes	Yes	Yes	Yes				
(Schneider et al., 2009b)	Pedestrian	Intersection	2-hour	Ordinary least square	Yes	Yes	Yes	Yes				
(Jones et al., 2010)	Bicycle, Pedestrian	Different locations	1-hour, 2- hour, daily	Ordinary least square	Yes	Yes	Yes	Yes				
(Miranda-Moreno and Fernandes, 2011)	Pedestrian	intersections	8-hour	Log-linear, Negative binomial	Yes	Yes	Yes	Yes	Yes			
(Hankey et al., 2012)	Bicycle, Pedestrian	Street segment	12-hour	Ordinary least square, Negative binomial	Yes		Yes	Yes	Yes			
(Schneider et al., 2012)	Pedestrian	Intersections	Annual	Log-linear			Yes	Yes	Yes			
(Hewawasam et al., 2014)	Pedestrian	Household	Daily	Multivariate regression	Yes	Yes						
(Wang et al., 2014)	Bicycle, Pedestrian	Multiuse trails	Daily	Linear and negative binomial	Yes		Yes		Yes			
(Tabeshian and Kattan, 2014)	Bicycle, Pedestrian	Intersection	2-hour	Multiple linear and Poisson regression	Yes	Yes		Yes				
(Kraemer et al., 2015)	Bicycle	Sites such as corridors	1-hour	Multiple linear regression					Yes			
(Wang et al., 2016)	Bicycle, Pedestrian	Trail segment	Annual	Negative binomial	Yes		Yes					
(Hankey and Lindsey, 2016)	Bicycle, Pedestrian	Block level	3-hour	Stepwise linear regression, Reduced form core and time average model		Yes		Yes	Yes			

(Fagnant and Kockelman, 2016)	Bicycle	Segments, intersections	3-hour	Poisson and Negative binomial	Yes			Yes	Yes	
(Clifton et al., 2016)	Pedestrian	Pedestrian and traffic analysis zones	Daily	Cross classification	Yes		Yes	Yes		
(Tian and Ewing, 2017)	Pedestrian	Household	Daily	Hurdle negative binomial	Yes		Yes	Yes		
(Dhanani et al., 2017)	Pedestrian	hexagons (diameter 350 m)	Six year	Poisson regression		Yes	Yes			
(Reardon et al., 2017)	Bicycle, Pedestrian	census blocks	Daily	Four step model	Yes		Yes	Yes		
(Fournier et al., 2017)	Bicycle	Continuous counters	Daily, monthly, annual	Time series model					Yes	
(Chen et al., 2017)	Bicycle	Bicycle count site buffer (0.25,0.5, 1-mile)	2-hour	A generalized linear mixed model	Yes	Yes	Yes	Yes		
(Nordback et al., 2017)	Bicycle, Pedestrian	Count stations	2-hour	Survey-based, count based, and a sketch planning tool	Yes			Yes		
(Hankey et al., 2017)	Bicycle, Pedestrian	Block level	3-hour	Facility demand model, land-use regression	Yes		Yes	Yes		
(Ermagun et al., 2018b)	Bicycle, Pedestrian	Multiuse trails	Daily	Negative binomial					Yes	
(Ermagun et al., 2018a)	Bicycle, Pedestrian	Infrared- inductive loop counters	1-hour, Daily	Generalized linear model with gamma distribution	Yes		Yes		Yes	
(Lu et al., 2018)	Bicycle, Pedestrian	Traffic monitoring station	1-hour	Stepwise linear regression		Yes		Yes		
Studies Incorporate Demand in Safety										
(Raford and Ragland, 2004)	Pedestrian	Segment, intersection	2-hour, annual	Space syntax tool	Yes					
(Miranda-Moreno et al., 2011)	Pedestrian	Intersection	3-hour	Log-linear and count regression model			Yes	Yes		

(Strauss et al., 2013)	Bicycle	Intersection	8-hour	Bivariate mixed Poisson model		Yes	Yes	Yes	Yes
(Strauss et al., 2015)	Bicycle	Segments, Intersection	8-hour	Linear regression model			Yes	Yes	
(Lee et al., 2018a)	Bicycle, Pedestrian	American household survey metropolitan area	Annual	Bayesian integrated bivariate probit regression	Yes	Yes	Yes	Yes	
(Lee et al., 2019)	Pedestrian	Intersections	Annual	Generalized linear model, Tobit regression	Yes	Yes		Yes	

EXPOSURE	MODELS	•				
Modola	Dependent	Definitions	Sample	Zon	Zonal (weighted)	
wiodels	variables	Definitions	size	Minimum	Maximum	Mean
Pedestrian generation model	Pedestrian origin trip count	Total number of daily pedestrian trips originated in TAZs	4747	0.00	39232.01	265.45
Pedestrian attraction model	Pedestrian destination trip count	Total number of daily pedestrian trips destined in TAZs	4747	0.00	39232.01	261.70
Bicycle generation model	Bicycle origin trip count	Total number of bicycle trips originated in TAZs	4747	0.00	7012.43	35.02
Bicycle attraction model	Bicycle destination trip count	total number of bicycle trips destined in TAZs	4747	0.00	7012.43	34.94
SAFETY MO	DELS		•			1
Madala	Dependent	D-6	Sample		Zonal	
Models	variables	Definitions	size	Minimum	Maximum	Mean
Pedestrian crash count model	Pedestrian crash counts	Total number of pedestrian crashes in TAZs	4747	0.00	9.00	0.31
Bicycle crash count model	Bicycle crash counts	Total number of bicycle crashes in TAZs	4747	0.00	8.00	0.21
Pedestrian cr	ash proportion by s	severity model				L
Proportio pedestria	on of PDO n crashes	Total number of PDO pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs		0.00	1.00	0.11
Proportic injury pe	on of possible destrian crashes	Total number of possible injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs		0.00	1.00	0.24
Proportio incapacit pedestria	on of non- ating injury n crashes	Total number of non- incapacitating injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs	949	0.00	1.00	0.38
Proportio injury pe	on of incapacitating destrian crashes	Total number of incapacitating injury pedestrian crashes in TAZs/ Total number of pedestrian crashes in TAZs		0.00	1.00	0.18
Proportio pedestria	on of fatal n crashes	Total number of fatal pedestrian crashes in		0.00	1.00	0.09

1 TABLE 2 Sample Statistics of Dependent Variables

	TAZs/ Total number of pedestrian crashes in TAZs							
Bicycle crash proportion by seve	Bicycle crash proportion by severity model							
Proportion of PDO bicycle crashes	Total number of PDO bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs	PDO n TAZs/ bicycle0.001.00possible ashes in iber of n TAZs0.001.00non- jury n TAZs/7100.001.00	0.00	1.00	0.12			
Proportion of possible injury bicycle crashes	Total number of possible injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs		0.32					
Proportion of non- incapacitating injury bicycle crashes	oportion of non- capacitating injury cycle crashes Total number of non- incapacitating injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs	719	0.00	1.00	0.41			
Proportion of incapacitating injury bicycle crashes	Total number of incapacitating injury bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs		0.00	1.00	0.14			
Proportion of fatal bicycle crashes	Total number of fatal bicycle crashes in TAZs/ Total number of bicycle crashes in TAZs		0.00	1.00	0.02			

Variable norma	Definitions	Zonal			
variable names	Definitions	Minimu	Maximu	Mean	
Sociodemographic characteristic	°S				
Population density	Total number of Population of TAZ/ Area of TAZ in acre	0.000	19.956	2.366	
Proportion of male population	Total number of male of TAZ/ Total number of Population of TAZ	0.000	0.998	0.49	
Proportion of 22-29 aged population	Total number of population who are 22 to 29 years old of TAZ/ Total number of Population of TAZ	0.000	0.397	0.096	
Proportion of people aged 65+	Total number of people above 65 years old of TAZ/ Total number of Population of TAZ	0.000	0.899	0.182	
Roadway and traffic attributes					
Traffic signal density	Total number of Traffic signal in TAZ	0.000	8.000	0.379	
Proportion of arterial roads	Total length of arterial road of TAZ/Total roadway length of TAZ	0.000	1.000	0.459	
Proportion of local roads	Total length of local road of TAZ/Total roadway length of TAZ	0.000	1.000	0.040	
Length of sidewalks	Total sidewalk length in meter of TAZ	0.000	36.346	0.280	
Length of bike lane	Total bike lane length in meter of TAZ	0.000	58.525	0.421	
Availability of bike lane	Presence of bike lane in TAZ	0.000	1.000	0.041	
Length of bus lanes	Total bus lane length in kilometer of TAZ	0.000	31.161	0.888	
Average zonal speed	Average zonal speed in mph	0.000	70.000	36.028	
AADT	Total Annual Average Daily Traffic (AADT) of TAZ/10000	0.000	27.550	0.931	
Truck AADT	Total Truck AADT of TAZ/10000	0.000	2.747	0.083	
VMT	Vehicle Miles Travel (VMT) = Total road length in miles * Average annual daily traffic / 100000	0.000	29.928	0.225	
Number of flashing beacon sign	Total number of flashing beacon of TAZ	0.000	2.000	0.009	
Number of school signal	Total number of school signal of TAZ	0.000	1.000	0.001	
Built environment characteristic	s				
Number of commercial centers	Total number of commercial center of TAZ	0.000	4.000	0.087	
Number of financial centers	Total number of financial center of TAZ	0.000	17.000	0.586	
Number of educational centers	Total number of educational center of TAZ	0.000	5.000	0.275	
Number of transit hubs	Total number of transit hub of TAZ	0.000	11.000	0.051	

TABLE 3 Summary Characteristics for Exogenous Variables

Number of restaurants	Total number of restaurant of TAZ	0.000	36.000	1.335			
Number of park and recreational centers	Total number of park and recreational center of TAZ	0.000	20.000	0.245			
Number of hospitals	Total number of hospital of TAZ	0.000	2.000	0.017			
Number of entertainment centers	Total number of entertainment center of TAZ	0.000	3.000	0.017			
Number of shopping centers	Total number of shopping center of TAZ	0.000	78.000	1.492			
Land-use characteristics							
Urban area	Ln (Urban area in a TAZ in acre)	-9.275	8.491	4.291			
Institutional area	Ln (Institutional area in a TAZ in acre)	-16.417	7.071	0.785			
Industrial area	Ln (Industrial area in a TAZ in acre)	-12.943	6.709	0.671			
Retail/Office area	Ln (Office/Retail area in a TAZ in acre)	-17.312	6.611	1.744			
Residential area	Ln (Residential area in a TAZ in acre)	-12.427	8.014	3.596			
Recreational area	Ln (Recreational area in a TAZ in acre)	-13.946	10.040	0.388			
Land-use mix	Land use mix = $\left[\frac{-\sum_{k}(p_{k}(lnp_{k}))}{lnN}\right]$, where k is the category of land-use, p_{k} is the proportion of the developed land area devoted to a specific land-use, N is the number of land-use categories in a TAZ	0.000	0.929	0.355			

	Р	edestrian de	mand models		Bicycle demand models			
Variable names	Pedestrian genera	ation model	Pedestrian attra	action model	Bicycle ger mod	neration el	Bicycle att mod	traction el
	Estimates	t-stat	Estimates	t-stat	Estimates	t-stat	Estimates	t-stat
Probabilistic component								
Constant	2.346	55.615	2.319	54.774	-0.197	-3.661	-0.339	-6.208
Land-use mix	0.605	8.143	0.539	7.212	0.596	8.187	0.719	9.832
Urban area	0.224	37.315	0.215	35.200	0.305	38.242	0.300	36.621
Number of Household	0.212	27.324	0.228	29.528	0.287	25.106	0.304	26.455
Count component								
Constant	-0.217	-27.198	-0.422	-57.616	-2.351	-69.340	-1.974	- 70.397
Sociodemographic characteristics								
Proportion of 65+ aged population	0.802	62.096	*		-0.546	-12.745		
Roadway and traffic attributes								
Average zonal speed	-0.008	-59.952						
AADT	-0.035	-31.141	-0.047	-40.822	-0.028	-8.577		
Proportion of arterial roads	0.320	53.077	0.255	43.828	0.095	6.921	0.044	3.473
Proportion of 3 and more lane roads	-0.316	-32.398	-0.420	-39.923	-0.740	-33.999	-1.243	- 55.656
Length of sidewalk	0.048	48.038	0.030	31.668	0.052	16.866	0.049	15.968
Built environment								
Number of commercial centers							-0.416	- 29.226
Number of educational centers							0.112	21.645
Number of business centers			0.158	10.811				
Number of entertainment centers			0.194	14.437			2.941	23.494
Number of financial centers			0.021	17.835			-0.144	- 43.018
Number of park and recreational centers			0.099	38.188			0.339	54.894
Number of restaurants			-0.022	-27.858			0.225	73.716
Number of shopping centers			0.032	46.627			-0.098	- 36.605
Number of transit hubs			-0.057	-10.832			0.260	23.207
Land-use characteristics								
Industrial area	-0.029	-22.989	-0.055	-42.162	0.092	31.510	0.052	17.338
Recreational area	0.070	70.274	0.042	38.617	0.016	6.847	-0.057	- 23.155

TABLE 4 Estimation Results of Exposure Models – Hurdle-Negative Binomial Models

Residential area	0.060	57.244	0.062	55.280	0.440	82.309	0.361	74.286
Retail/office area	0.049	40.450	0.037	25.914	-0.127	-39.940	-0.191	- 53.656
Institutional area	0.126	110.646	0.146	124.131	0.041	12.410	0.032	9.903
Over dispersion parameter	0.917	116.574	0.826	110.526	3.081	26.618	6.009	20.365

*variable insignificant at 90% significance level

Variable names Estimates t-stat Estimates t-stat Constant -3.063 -22.318 -3.789 -23.884 Sociodemographic characteristics Population density 0.131 10.645 0.130 10.050 Proportion of people aged 65+ -1.401 -4.229 -0.979 -3.019 Roadway and traffic attributes	Variable menue	Pedestrian cras	h count model	Bicycle crash count model		
Constant -3.063 -22.318 -3.789 -23.884 Sociodemographic characteristics	variable names	Estimates	t-stat	Estimates	t-stat	
Sociodemographic characteristics Population density 0.131 10.645 0.130 10.050 Proportion of people aged 65+ -1.401 -4.229 -0.979 -3.019 Roadway and traffic attributes Traffic signal density 0.223 6.001 0.146 3.994 Proportion of atterial roads 0.325 3.723 0.341 3.619 Proportion of local roads 1.681 Length of sidewalk 0.025 2.090 1.640 1.681 Length of bus lane 0.016 1.681 Length of bus lane 0.087 5.040 AADT 0.037 2.373 0.090 2.272 Truck AADT 0.182 1.863 Number of commercial centers	Constant	-3.063	-22.318	-3.789	-23.884	
Population density 0.131 10.645 0.130 10.050 Proportion of people aged 65+ -1.401 -4.229 -0.979 -3.019 Rodway and traffic attributes -1.401 -4.229 -0.979 -3.019 Traffic signal density 0.223 6.001 0.146 3.994 Proportion of arterial roads 0.325 3.723 0.341 3.619 Proportion of local roads * 0.799 -2.241 Length of sidewalk 0.025 2.090 $$ $$ Length of bus lane $$ $$ 0.016 1.681 Length of bus lane $$ $$ 0.087 5.040 AADT 0.037 2.373 0.090 2.272 Truck AADT $$ $$ 0.182 1.863 Number of commercial centers $$ $$ 0.182 1.863 Number of funancial centers $$ $$ 0.063 3.204 Numb	Sociodemographic characteristics					
Proportion of people aged $65+$ -1.401 -4.229 -0.979 -3.019 Roadway and traffic attributes </td <td>Population density</td> <td>0.131</td> <td>10.645</td> <td>0.130</td> <td>10.050</td>	Population density	0.131	10.645	0.130	10.050	
Roadway and traffic attributes Traffic signal density 0.223 6.001 0.146 3.994 Proportion of arterial roads 0.325 3.723 0.341 3.619 Proportion of local roads * -0.799 -2.241 Length of sidewalk 0.025 2.090 Length of bike lane 0.016 1.681 Length of bike lane 0.087 5.040 AADT 0.037 2.373 0.090 2.272 Truck AADT -1.054 -2.510 Built environment 0.063 3.204 Number of commercial centers 0.063 3.204 Number of financial centers 0.085 1.822 Number of ratrait hubs 0.254 5.506 Number of ratrait centers 0.123 3.173 Number of salurants <t< td=""><td>Proportion of people aged 65+</td><td>-1.401</td><td>-4.229</td><td>-0.979</td><td>-3.019</td></t<>	Proportion of people aged 65+	-1.401	-4.229	-0.979	-3.019	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Roadway and traffic attributes					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Traffic signal density	0.223	6.001	0.146	3.994	
Proportion of local roads * $$ -0.799 -2.241 Length of sidewalk 0.025 2.090 $$ $$ Length of bike lane $$ $$ 0.016 1.681 Length of bike lane $$ $$ 0.016 1.681 Length of bus lane $$ $$ 0.007 2.373 0.090 2.272 Truck AADT $$ $$ -1.054 -2.510 Built environment $$ $$ 0.162 1.863 Number of commercial centers $$ $$ 0.063 3.204 Number of financial centers $$ $$ 0.063 3.204 Number of restaurants 0.085 1.822 $$ $$ Number of restaurants 0.0254 5.506 $$ $$ Number of park and recreational centers 0.123 3.173 $$ $$ Number of hospitals $$ $$ 0.049	Proportion of arterial roads	0.325	3.723	0.341	3.619	
Length of sidewalk 0.025 2.090 $$ $$ Length of bike lane $$ $$ 0.016 1.681 Length of bus lane $$ $$ 0.087 5.040 AADT 0.037 2.373 0.090 2.272 Truck AADT $$ $$ $$ -1.054 -2.510 Built environment $$ $$ 0.182 1.863 Number of commercial centers $$ $$ 0.063 3.204 Number of financial centers $$ $$ 0.063 3.204 Number of educational centers 0.085 1.822 $$ $$ Number of transit hubs 0.254 5.506 $$ $$ Number of restaurants 0.086 9.055 0.052 5.135 Number of hospitals $$ $$ 0.307 3.143 Land-use characteristics $$ $$ 0.049 -2.222 Urban area 0.123 5.098 0.165 5.876 Residential area $$ $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures $$ $$ $$ $$ Total pedestrian trip demand per household [Total pedestrian daily trip demand fun a TAZ! $$ $$ $$ Total bicycle trip demand [Ln(Total bicycle trip demand [Ln(Total bicycle trip demand [Ln(Total bicycle daily trip demand [Ln(Total bicycle daily trip demand [Ln(Total bicycle trip demand [Ln(Total bicycle chally	Proportion of local roads	*		-0.799	-2.241	
Length of bike lane0.0161.681Length of bus lane0.0875.040AADT0.0372.3730.0902.272Truck AADT1.054-2.510Built environmentNumber of commercial centers0.1821.863Number of financial centers0.0633.204Number of educational centers0.0851.822Number of educational centers0.0851.822Number of transit hubs0.2545.506Number of restaurants0.0869.0550.0525.135Number of park and recreational centers0.1233.173Number of hospitals0.3073.143Land-use characteristics0.049-2.222Urban area0.1235.0980.1655.876Residential area0.0412.0760.0823.736Recreational area0.049-2.222Land-use mix0.8104.6730.6973.719Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand function of household in a TAZ]0.0422.055Total bicycle trip demand [Ln(Total bicycle trip demand [Ln(Total bicycle daily trip demand [Ln(Total bicycle daily trip demand [Ln(Total bicycle trip demand [Ln(Total bicycle daily t	Length of sidewalk	0.025	2.090			
Length of bus lane 0.087 5.040 AADT 0.037 2.373 0.090 2.272 Truck AADT -1.054 -2.510 Built environment Number of commercial centers 0.182 1.863 Number of financial centers 0.063 3.204 Number of educational centers 0.085 1.822 Number of ransit hubs 0.254 5.506 Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 Number of hospitals 0.307 3.143 Land-use characteristics 0.049 2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ] $$ 0.042 2.055	Length of bike lane			0.016	1.681	
AADT 0.037 2.373 0.090 2.272 Truck AADT -1.054 -2.510 Built environment -1.054 -2.510 Built environment -1.054 -2.510 Built environment 0.182 1.863 Number of commercial centers 0.063 3.204 Number of educational centers 0.085 1.822 Number of restaurants 0.086 9.055 0.052 5.135 Number of nestaurants 0.086 9.055 0.052 5.135 Number of hospitals 0.307 3.143 Land-use characteristics 0.307 3.143 Land-use mix 0.041 2.076 0.082 3.736 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 <	Length of bus lane			0.087	5.040	
Truck AADT1.054-2.510Built environment -1.054 1.863Number of commercial centers 0.182 1.863 Number of financial centers 0.063 3.204 Number of educational centers 0.085 1.822 Number of ransit hubs 0.254 5.506 Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 Number of hospitals 0.307 3.143 Land-use characteristicsUrban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures $$ $$ Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] $$ 0.042 2.055	AADT	0.037	2.373	0.090	2.272	
Built environment Number of commercial centers 0.182 1.863 Number of financial centers 0.063 3.204 Number of educational centers 0.085 1.822 Number of ransit hubs 0.254 5.506 Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 Number of hospitals 0.307 3.143 Land-use characteristics Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/ total n	Truck AADT			-1.054	-2.510	
Number of commercial centers 0.182 1.863 Number of financial centers \cdots \cdots 0.063 3.204 Number of educational centers 0.085 1.822 \cdots \cdots Number of transit hubs 0.254 5.506 \cdots \cdots Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 \cdots \cdots Number of hospitals \cdots \cdots 0.307 3.143 Land-use characteristics \cdots \cdots 0.307 3.143 Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area \cdots \cdots -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures \cdots -0.277 -1.482 \cdots \cdots Total pedestrian trip demand per household [Total pedestrian daily trip demand fundily trip demand in a TAZ/(Total number of household in a TAZ*100)] \cdots \cdots 0.042 2.055	Built environment					
Number of financial centers 0.063 3.204 Number of educational centers 0.085 1.822 Number of transit hubs 0.254 5.506 Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 Number of hospitals 0.307 3.143 Land-use characteristics 0.307 3.143 Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures -0.277 -1.482 Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] 0.042 2.055	Number of commercial centers			0.182	1.863	
Number of educational centers 0.085 1.822 $$ $$ Number of transit hubs 0.254 5.506 $$ $$ Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 $$ $$ Number of hospitals $$ $$ 0.307 3.143 Land-use characteristics $$ $$ 0.307 3.143 Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area $$ $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures -0.277 -1.482 $$ $$ Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] $$ $$ 0.042 2.055	Number of financial centers			0.063	3.204	
Number of transit hubs 0.254 5.506 $$ $$ Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 $$ $$ Number of hospitals $$ $$ 0.307 3.143 Land-use characteristics $$ $$ 0.307 3.143 Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area $$ $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures $$ $$ $$ $$ $$ Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] $$ $$ $$ $$ Total bicycle trip demand [Ln(Total bicycle trip demand in a TAZ] $$ $$ 0.042 2.055	Number of educational centers	0.085	1.822			
Number of restaurants 0.086 9.055 0.052 5.135 Number of park and recreational centers 0.123 3.173 Number of hospitals 0.307 3.143 Land-use characteristicsUrban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] -0.277 -1.482 Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] 0.042 2.055	Number of transit hubs	0.254	5.506			
Number of park and recreational centers 0.123 3.173 $$ $$ Number of hospitals $$ $$ 0.307 3.143 Land-use characteristicsUrban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area $$ $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures -0.277 -1.482 $$ $$ Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] $$ $$ 0.042 2.055	Number of restaurants	0.086	9.055	0.052	5.135	
Number of hospitals 0.307 3.143 Land-use characteristicsUrban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] $$ Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] 0.042 2.055	Number of park and recreational centers	0.123	3.173			
Land-use characteristics Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measures Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] -0.277 -1.482 $$ $$ Total bicycle trip demand [Ln(Total bicycle trip demand in a TAZ] $$ $$ 0.042 2.055	Number of hospitals			0.307	3.143	
Urban area 0.123 5.098 0.165 5.876 Residential area 0.041 2.076 0.082 3.736 Recreational area -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] -0.277 -1.482 $$ $$ Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] $$ $$ 0.042 2.055	Land-use characteristics					
Residential area 0.041 2.076 0.082 3.736 Recreational area $$ $$ -0.049 -2.222 Land-use mix 0.810 4.673 0.697 3.719 Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] -0.277 -1.482 $$ $$ Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] $$ $$ 0.042 2.055	Urban area	0.123	5.098	0.165	5.876	
Recreational area0.049-2.222Land-use mix0.8104.6730.6973.719Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]-0.277-1.482Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ]0.0422.055	Residential area	0.041	2.076	0.082	3.736	
Land-use mix0.8104.6730.6973.719Exposure measuresTotal pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]-0.277-1.482Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ]0.0422.055	Recreational area			-0.049	-2.222	
Exposure measures Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)] -0.277 -1.482 Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] 0.042 2.055	Land-use mix	0.810	4.673	0.697	3.719	
Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]-0.277-1.482Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ]0.0422.055	Exposure measures					
household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]-0.277-1.482Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ]0.0422.055	Total pedestrian trip demand per					
demand in a TAZ/(Total number of household in a TAZ*100)] 11002 Total bicycle trip demand [Ln(Total bicycle daily trip demand in a TAZ] 0.042 2.055	household [Total pedestrian daily trip	-0.277	-1.482			
household in a TAZ*100)] 0.042 2.055	demand in a TAZ/(Total number of	0.277	1.102			
bicycle daily trip demand in a TAZ] 0.042 2.055	nousenold in a TAZ*100)]					
Ulcycle uaity utp uchialiu ili a TAZ	biovele daily trip demand [Ln(lotal			0.042	2.055	
Over-dispersion parameter 1.004 9.297 0.641 5.642	Over-dispersion parameter	1 004	9 297	0.641	5 642	

 TABLE 5 Estimation Result of Crash Count Models – Negative Binomial Models

*variable insignificant at 90% significance level

Variable name	Pedestrian crash p by severity n	roportions Iodel	Bike crash proportions by severity model		
	Estimates	t-stat	Estimates	t-stat	
Threshold 1	-1.708	-13.117	-1.450	-8.330	
Threshold 2	-0.870	-6.818	-0.395	-2.309	
Threshold 3	0.146	1.148	0.798	4.589	
Threshold 4	0.916	7.018	1.954	9.929	
Sociodemographic Characteristics					
Population Density	-0.022	-1.898	-0.032	-2.061	
Proportion of people aged 22 to 29	-1.321	-1.965			
Roadway and Traffic Attributes					
Number of flashing beacon sign	*		0.936	2.347	
Number of school signals			0.362	2.474	
Availability of bike lane			-0.288	-1.797	
VMT	0.049	1.675			
Built Environment		•			
Number of commercial centers	-0.149	-1.936			
Number of hospitals			-0.189	-1.795	
Number of park and recreational centers			0.139	2.802	
Land-use Characteristics		•			
Urban area	-0.046	-2.466	-0.076	-2.079	
Residential area			0.066	2.560	
Exposure Measures				-	
Total pedestrian trip demand per household [Total pedestrian daily trip demand in a TAZ/(Total number of household in a TAZ*100)]	-1.063	-2.756			
Total bicycle trip demand per household [Total bicycle daily trip demand in a TAZ/Total number of household in a TAZ]			-0.005	-1.040	

 TABLE 6 Estimation Results of Crash Proportions by Severity Models – Ordered Probit

 Fractional Split Models

*variable insignificant at 90% significance level

	I	n sample pr	edictive fit meas	sures for Dei	nand Models				
Models			Events	Observed	Predicted		Percentag e Error		
		Total Zones	with zero trip co	4007.00	4006.80		0.005		
Pedestrian g	enerator model	Total numb	er of zonal trips		1260090.6	1255479.9		0.366	
		Average zoi	nal trips		265.45	264.48		0.365	
		Total Zones	with zero trip co	4010.00	4010.49		-0.012		
Pedestrian attractor model		Total numb	er of zonal trips	1242270.5	1236690.7		0.449		
		Average zoi	nal trips		261.70	260.52		0.451	
		Total Zones	with zero trip co	4574.00	4573.82		0.004		
Bicycle gene	rator model	Total numb	er of zonal trips	166248.45	165671.36		0.347		
		Average zonal trips			35.02	34.90		0.343	
		Total Zones with zero trip count			4581.00	4581.18		-0.004	
Bicycle attra	ctor model	Total numb	er of zonal trips	165845.77	171959.97		-3.687		
		Average zoi	nal trips	34.94	36.22		-3.663		
		In sample p	redictive fit me	asures for Co	ount Models				
		Mear	ı crash						
Models	Observ	ved	Predic	ted	МРВ		MAD		
Pedestrian	0.31		0.33		-0.80			11.49	
Bicycle	Bicycle 0.21		0.22	2	-0.26			6.39	
	In sa	mple predic	ctive fit measure	s for Fractio	onal Split Mo	dels			
		Mean p	roportion						
Models	Severity Levels		Observed	Predicted	MAPE		RMSE		
	Proportion of property		0.113	0.113	0.003			0.526	
Pedestrian	damage only crashes Proportion of minor injury		0.237	0.237					
	Proportion of non- incapacitating injury crashes		0.382	0.381					
	Proportion of incapacitating injury crashes		0.183	0.184					
	Proportion of fatal crashes		0.085	0.084					
Bievelo	Proportion of property damage only crashes		0.115	0.115	0.005			0.2012	
Dicycle	Proportion of minor injury crashes		0.320 0.320		0.005		0.2912		

Proportion of non- incapacitating injury crashes	0.407	0.407	
Proportion of incapacitating injury crashes	0.141	0.141	
Proportion of fatal crashes	0.017	0.017	

TABLE 8 Policy Scenarios

			Number of zones	Change in zonal demand		Change in crash count		Change in crash severity proportions		
Scenarios	Description of scenarios	Study region						Fatal Crash		
				Pedestrian	Bicycle	Pedestrian	Bicycle	Pedestrian	Bicycle	
	50% reduction in traffic	All zones	4747	0.164	0.043	-0.63	3.144	-4.967	-0.066	
Scenario 1	volume with 2 miles buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.804	0.389	-3.266	-2.889	-4.687	-0.045	
	30% reduction in traffic	All zones	4747	0.096	0.026	-0.437	3.622	-4.963	-0.066	
Scenario 2	volume with 2 miles buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.060	0.231	-2.120	-0.274	-4.664	-0.045	
	15% reduction in traffic volume with 4 miles buffer area of different central business district (CBD)	All zones	4747	0.125	0.030	-0.482	3.554	-4.963	-0.066	
Scenario 3		Zones within 4 miles buffer of CBD	1375	0.498	0.090	-1.280	1.680	-4.55	0.003	
Scenario 4	5% reduction in traffic volume with 6 miles buffer area of different central business district (CBD)	All zones	4747	0.071	0.013	-0.34	3.935	-4.96	-0.066	
		Zones within 6 miles buffer of CBD	1985	0.166	0.027	-0.589	3.281	-4.891	0.015	
Scenario 5	All zones have sidewalk and the new proposed sidewalk length = $\frac{(TAZ \ area)^{0.5}}{2}$ meter	All zones	4747	-0.438	0.108	-1.360	4.367	-1.013	-0.063	
Scenario 6	50% increase in existing sidewalk length	All zones	4747	0.705	0.289	0.985	4.436	-1.111	-0.071	
Scenario 7	15% reduction in zonal average maximum speed	All zones	4747	1.407	0.000	-0.143	0.000	-1.107	0.000	
Scenario 8	25% reduction in zonal average maximum speed	All zones	4747	2.389	0.000	-0.150	0.000	-1.135	0.000	
Scenario 9	15% reduction in zonal proportion of 3+lane road All zones		4747	0.287	0.576	-0.138	4.436	-1.077	-0.068	
Scenario 10	25% reduction in zonal proportion of 3+lane road	All zones	4747	0.484	0.337	-0.143	4.415	-1.085	-0.066	

PEDESTRIAN									
County	Trip origin demand			Trip	destination den	nand	Total trip demand		
County	2010	2015	% change	2010	2015	% change	2010	2015	% change
Brevard	154936.5	153610.7	-0.9	149804.8	144628.0	-3.5	304741.3	298238.7	-2.1
Flagler	26241.5	24853.4	-5.3	23153.7	22261.3	-3.9	49395.1	47114.6	-4.6
Indian River	12066.8	12169.7	0.9	11826.2	11663.3	-1.4	23892.9	23833.0	-0.3
Lake	67309.3	68943.5	2.4	66545.9	65799.1	-1.1	133855.2	134742.6	0.7
Marion	95199.9	93593.9	-1.7	89602.9	89575.3	0.0	184802.8	183169.2	-0.9
Orange	348163.9	342918.6	-1.5	355169.8	349371.2	-1.6	703333.7	692289.8	-1.6
Osceola	67651.6	68006.6	0.5	65181.7	64571.8	-0.9	132833.3	132578.4	-0.2
Polk	185959.9	195780.4	5.3	195543.4	205340.1	5.0	381503.4	401120.4	5.1
Seminole	75690.1	79112.2	4.5	79212.2	80228.2	1.3	154902.3	159340.4	2.9
Sumter	32272.8	30488.9	-5.5	26598.9	25489.9	-4.2	58871.7	55978.8	-4.9
Volusia	189987.7	189005.7	-0.5	174051.2	172072.2	-1.1	364038.8	361077.9	-0.8
Total	1255480.0	1258483.6	0.2	1236691.0	1231000.4	-0.5	2492171.0	2489483.9	-0.1
	-			BICYO	CLE				
County	Trip origin demand			Trip destination demand			Total trip demand		
County	2010	2015	%change	2010	2015	%change	2010	2015	%change
Brevard	21663.6	21822.8	0.7	23172.9	23344.3	0.7	44836.5	45167.1	0.7
Flagler	2940.3	2964.9	0.8	2634.0	3031.2	15.1	5574.4	5996.1	7.6
Indian River	1735.3	1734.3	-0.1	999.5	998.4	-0.1	2734.7	2732.8	-0.1
Lake	10784.3	10676.6	-1.0	9977.6	9774.7	-2.0	20761.9	20451.2	-1.5
Marion	5238.3	5448.9	4.0	4226.3	4344.1	2.8	9464.5	9793.0	3.5
Orange	57661.9	60551.9	5.0	64084.7	68918.9	7.5	121746.7	129470.8	6.3
Osceola	4026.1	4308.8	7.0	3875.6	3974.1	2.5	7901.8	8282.9	4.8
Polk	10931.1	11589.5	6.0	10687.7	11851.7	10.9	21618.8	23441.2	8.4
Seminole	12179.4	12529.5	2.9	11558.9	11903.0	3.0	23738.3	24432.5	2.9
Sumter	553.1	614.6	11.1	817.9	1019.8	24.7	1371.0	1634.4	19.2
Volusia	37958.0	38199.6	0.6	39924.9	41457.9	3.8	77882.8	79657.5	2.3
Total	165671.4	170441.4	2.9	171960.0	180618.0	5.0	337631.3	351059.4	4.0

TABLE 9 Trip demane	l matrices by	y county	v level for the	e years 2010 and 2015
				DEDEGTDIAN

APPENDIX A: Hurdle Negative Binomial (HNB) Model Framework

The Hurdle approach is generally used for modeling excess sampling zeroes. It is usually interpreted as a two-part model: the first part is a binary response structure modeling the probability of crossing the hurdle of zeroes for the response and the second part is a zero-truncated formulation modeled in the form of standard count models (Poisson or NB). Thus, the probability expression for the Hurdle model can be expressed as:

$$\Lambda_{i}[y_{i}] = \begin{cases} \pi_{i} & y_{i} = 0\\ \\ \frac{(1-\pi_{i})}{(1-e^{-\mu_{i}})} P_{i}(y_{i}) & y_{i} > 0 \end{cases}$$
(1)

where *i* is the index for TAZ (i = 1,2,3,...,N) and y_i is the index for non-motorist (pedestrian and bicycle) trips occurring daily in a TAZ *i*.

In Equation 1, π_i is the probability of zero trip count and is modeled as a binary logit model as follows:

$$\pi_i = \frac{exp(\gamma \eta_i)}{1 + exp(\gamma \eta_i)} \tag{2}$$

where η_i is a vector of attributes and γ is a conformable parameter vector to be estimated. $P_i(y_i)$ in Equation 1 can be presented as NB expression in forming Hurdle NB (HNB) regression model. Given the setup as presented in Equation 1, the probability distribution for NB can be written as:

$$P_i(y_i|,\mu_{i,\alpha}) = \frac{\Gamma(y_i+\alpha^{-1})}{\Gamma(y_i+1)\Gamma(\alpha^{-1})} \left(\frac{1}{1+\alpha\mu_i}\right)^{\frac{1}{\alpha}} \left(1-\frac{1}{1+\alpha\mu_i}\right)^{y_i}$$
(3)

where $\Gamma(\cdot)$ is the Gamma function and α is the NB dispersion parameter. μ_i is the expected number of daily trips non-motorists are making in TAZ *i* where α represents the overdispersion parameter. We can express μ_i as a function of explanatory variable (\mathbf{z}_i) by using a log-link function as $\mu_i = E(y_i | \mathbf{z}_i) = exp(\delta \mathbf{z}_i)$, where δ is a vector of parameters to be estimated. Finally, the weighted log-likelihood function for the HNB model can be written as:

$$LL = w_i * \begin{cases} \ln(\pi_i) & y_i = 0\\ \ln\left(\frac{(1-\pi_i)}{(1-e^{-\mu_i})}P_i(y_i)\right) & y_i > 0 \end{cases}$$
(4)

The daily trip weight at the zonal level is generated by using the following formulation:

$$w_i = \sum_{j=1}^{J} \frac{Yearly \, person \, trip \, weight}{365} \tag{5}$$

where j (j = 1,2,3,...J) represents the index for trip.

The reader should note that in computing the weighting factor, as presented in Equation 5, we divided the yearly person trip factor, as obtained from NHTS data, by 365 to convert the yearly trip count to a daily trip count. Substitution of $(P_i(y_i))$ by Equation 3 into Equation 4 results HNB model. The model presented in Equation 4 is estimated by using a maximum likelihood approach.

APPENDIX B: Negative Binomial (NB) Model Framework

The focus of our study is to model pedestrian crash frequency and bicycle crash frequency at zonal level by employing NB modeling framework. The econometric framework for the NB model is presented in this section.

Let *i* be the index for TAZ (i = 1, 2, 3, ..., N) and y_i be the index for crashes occurring over a period of time in a TAZ *i*. The NB probability expression for random variable y_i can be written as:

$$P_{i}(y_{i}|\mu_{i},\alpha) = \frac{\Gamma\left(y_{i}+\frac{1}{\alpha}\right)}{\Gamma(y_{i}+1)\Gamma\left(\frac{1}{\alpha}\right)} \left(\frac{1}{1+\frac{\mu_{i}}{\alpha}}\right)^{\frac{1}{\alpha}} \left(1-\frac{1}{1+\frac{\mu_{i}}{\alpha}}\right)^{y_{i}}$$

where, $\Gamma(\cdot)$ is the Gamma function, α is the NB dispersion parameter and μ_i is the expected number of crashes occurring in TAZ *i* over a given period of time. We can express μ_i as a function of explanatory variable (x_i) by using a log-link function as: $\mu_i = E(y_i|x_i) = exp(\beta x_i)$, where β is a vector of parameters to be estimated. Finally, the log-likelihood function for the NB model can be written as:

$$LL = \sum_{i=1}^{N} log(P_i)$$

The parameters to be estimated in the model of equation 2 are: β and α . The parameters are estimated using maximum likelihood approaches.

APPENDIX C: Ordered Probit Fractional Split (OPFS) Model Framework

The formulation for the OPFS model for modeling the proportion of crashes by severity is presented in this section. The reader would note that conventional maximum likelihood approaches are not suited for factional proportion models. Hence, we resort to a quasi-likelihood approach. Let q (q = 1, 2, ..., Q) be an index to represent TAZ, and let k (k = 1, 2, 3, ..., K) be an index to represent severity category. The latent propensity equation for severity category at the q th zone:

$$y_q^* = \alpha' z_q + \xi_q,\tag{1}$$

This latent propensity y_q^* is mapped to the actual severity category proportion y_{qk} by the ψ thresholds ($\psi_0 = -\infty$ and $\psi_k = \infty$). z_q is an ($L \ge 1$) column vector of attributes (not including a constant) that influences the propensity associated with severity category. α is a corresponding ($L \ge 1$)-column vector of mean effects. ξ_q is an idiosyncratic random error term assumed to be identically and independently standard normal distributed across zones q.

Model Estimation

The model cannot be estimated using conventional Maximum likelihood approaches. Hence we resort to quasi-likelihood based approach for our methodology. The parameters to be estimated in the Equation (2) are α , and ψ thresholds. To estimate the parameter vector, we assume that

$$E(y_{qk} | z_{qk}) = H_{qk}(\alpha, \psi), 0 \le H_{qk} \le 1, \sum_{k=1}^{K} H_{qk} = 1$$
(2)

 H_{qk} in our model takes the ordered probit probability (P_{qk}) form for severity category k defined as

$$P_{qk} = \left\{ G \left[\psi_k - \alpha'_q z_q \right] - G \left[\psi_{k-1} - \alpha'_q z_q \right] \right\}$$
(3)

The proposed model ensures that the proportion for each severity category is between 0 and 1 (including the limits). Then, the quasi-likelihood function, for a given value of δ_q vector may be written for site q as:

$$L_{q}(\alpha,\psi) = \prod_{k=1}^{K} \left\{ G[\psi_{k} - \alpha'_{q}z_{q}] - G[\psi_{k-1} - \alpha'_{q}z_{q}] \right\}^{d_{qk}}$$
(4)

where G(.) is the cumulative distribution of the standard normal distribution and d_{qk} is the proportion of crashes in severity category k. The model estimation is undertaken using routines programmed in Gauss matrix programming language.