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ABSTRACT 

The current research effort contributes to safety literature by developing an integrated framework 

that allows for the influence of independent variables from crash type and severity components at 

the disaggregate level to be incorporated within the aggregate level propensity to estimate crash 

frequency by crash type and severity. The empirical analysis is based on the crash data drawn from 

the city of Orlando, Florida for the year 2019. The disaggregate level analysis uses 15,518 crash 

records of three crash types including rear end, angular and sideswipe. Each crash record contains 

crash specific factors, driver and vehicle factors, roadway attributes, road environmental and 

weather information. For aggregate level model analysis, the study aggregates the crash records 

by crash type over 300 traffic analysis zones. An exhaustive set of independent variables including 

roadway and traffic characteristics, land-use attributes, built environment and sociodemographic 

factors are considered in this level. The empirical analysis is further augmented by employing 

several goodness of fit and predictive measures. A validation exercise is also conducted using a 

holdout sample to highlight the superiority of the proposed integrated model relative to the non-

integrated model system. The proposed framework can also incorporate unobserved heterogeneity 

in the model system. The findings of the study indicate that the proposed framework is 

advantageous for capturing the variable effects simultaneously across the aggregate and 

disaggregate levels. 

 

Keywords: Crash type, Crash severity, Aggregate and disaggregate level analysis, Integrated 

framework, Unobserved effects. 
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1. MOTIVATION  

In transportation safety literature, the application of statistical and econometric models is an 

important tool for identifying factors influencing crash occurrence/consequences and devising 

appropriate countermeasures. Crash frequency models are traditionally applied to study crash 

occurrence at a facility resolution (such as segment, intersection or traffic analysis zone) while 

discrete outcome models are employed for crash severity analysis (such as driver injury severity). 

The econometric model frameworks developed in safety literature have significantly been 

enhanced in recent years (see Lord and Mannering, 2010; Mannering et al., 2016; Savolainen et 

al., 2011; Yasmin and Eluru, 2013 for a review). The major advances in literature can be broadly 

classified along two directions. The first direction of advances is focused on accommodating the 

influence of unobserved factors in crash modeling. Several studies following the seminal paper by 

Mannering et al. (2016) have conducted research along these lines including models with random 

parameters, heterogeneity in variances, endogeneity models, and multivariate models (Ahmed et 

al., 2023; Balusu et al., 2018; Bhowmik et al., 2022, 2021a; Yasmin et al., 2018). The different 

approaches employed for crash frequency analysis include random effect/parameter negative 

binomial models (Gong et al., 2020; Yan et al., 2020), latent segmentation based-negative binomial 

models (Bhowmik et al., 2022; Yasmin and Eluru, 2016), random parameter multivariate tobit 

models (Anastasopoulos, 2016), random parameter zero-inflated/hurdle models (Gu et al., 2020; 

Yu et al., 2019), negative binomial-fractional split models (Yasmin and Eluru, 2018), panel mixed 

negative binomial models (Bhowmik et al., 2022, 2019), copula based-crash frequency models 

(Yasmin et al., 2018), Bayesian Poisson-lognormal multilevel/hierarchical models (Alarifi et al., 

2018; Cui and Xie, 2021), geographically weighted regression models (Huang et al., 2018), 

random parameter negative binomial-Lindley models (Islam et al., 2023a), and integrated crash 

frequency models (Cai et al., 2019; Pervaz et al., 2022). For crash severity models, advances in 

this realm include random parameter/mixed logit models (Hou et al., 2022; Islam et al., 2023b), 

generalized ordered logit models (Marcoux et al., 2018), scaled generalized ordered logit models 

(Kabli et al., 2023; Marcoux et al., 2018), random parameter latent class clustering and latent 

segmentation based ordered logit models (Chang et al., 2021; Xiong and Mannering, 2013). 

The second direction of research is geared towards accommodating systematic factors by 

recognizing different observed attributes typically not considered in the analysis. Studies in this 

realm building on Mannering (2018) include efforts to carefully incorporate the influence of 

temporal instability by explicitly recognizing model parameter variation across the time periods 

(such as years) (Mannering, 2018). Within this realm, another group of studies focus on developing 

parsimonious models by employing pooled model frameworks. For example, Bhowmik et al. 

(2019) proposed a pooled univariate crash frequency model (accommodating unobserved 

heterogeneity) by recasting the multivariate crash frequency modeling approach as repeated 

measures of crash frequency while recognizing that each repetition represents a different crash 

type (Bhowmik et al., 2022, 2021b, 2019). The approach simplifies observed parameter inclusion 

in the models while accommodating for deviations across multiple sections of the data through 

interaction effects. The heterogeneity in means approach also allows for interactions among 

observed variables to allow for additional observed impacts to be recognized (Alnawmasi and 

Mannering, 2022; Huo et al., 2020; Mannering et al., 2016).  

To be sure, several advanced frameworks contribute to both directions including (a) latent 

class models, (b) heterogeneity in means and variances, and (c) integrated multi-resolution 

approaches. Safety models employing latent class models (or finite mixture models) incorporate 

the impact of observed and unobserved variables in partitioning the population into different 
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classes with class specific variable impacts. Latent class modeling approaches have been employed 

for crash frequency analysis (see Bhowmik et al., 2022; Yasmin and Eluru, 2016) and crash 

severity analysis (see Chang et al., 2021; Xiong and Mannering, 2013; Yasmin et al., 2014). The 

commonly adopted heterogeneity in means and variances incorporates additional observed 

heterogeneity through interaction variables and unobserved heterogeneity by allowing unobserved 

heterogeneity to vary across the data as a function of independent variables. In recent years several 

studies employed these approaches for crash frequency (see Alnawmasi and Mannering, 2022; 

Huo et al., 2020) and severity analysis (see Ahmed et al., 2023; Alnawmasi and Mannering, 2022; 

Xin et al., 2017). While this approach has been very well applied as documented by the burgeoning 

studies in safety literature, the approach is applied with traditional safety data. Pervaz et al. (2023), 

a study from the integrated multi-resolution approach, proposed a unified model system to 

accommodate for observed and unobserved variables by considering safety data from a more 

nuanced and conceptually enhanced framework (Pervaz et al., 2023). The study developed an 

integrated framework that recognizes that crash frequency data are generated by aggregating 

individual crash records. However, the information in these individual crash records is often 

ignored in developing crash frequency models. In their study, Pervaz et al. (2023) enhanced the 

observed attributes considered in the model framework by incorporating the influence of 

independent variables at the crash record level from a crash severity model within the aggregate 

level crash frequency propensity component. Further, the study also allowed for the influence of 

unobserved factors across the aggregated and crash record level model components. Thus, the 

study illustrated how additional observed information present in crash records can be included in 

an aggregate model framework that traditionally has ignored these crash record data while also 

controlling for unobserved effects. 

 

2. STUDY CONTEXT 

The current study builds on this integrated multi-resolution approach by accommodating for 

additional information from the crash record data. In Pervaz et al. (2023), crash severity model 

information was incorporated in the crash frequency models (Pervaz et al., 2023). While this is a 

significant contribution, it might be beneficial to incorporate the factors contributing to different 

crash types along with crash severity within the aggregate framework to augment the observed 

information flow from crash record level data. The approach would involve summing up the crash 

propensity of each disaggregate level crash record by crash type and injury severity within the 

aggregate resolution and adding the generated values as new variables in the aggregate level 

model. The process significantly increases the dimensionality of the terms being considered in the 

aggregate and disaggregate model components. To summarize, in our current paper, a unified 

framework that explicitly allows for the information flow of observed and unobserved variables 

from the crash type and crash severity model components into the aggregate level crash frequency 

model is proposed and estimated.  

In our study, a panel mixed negative binomial-ordered probit fractional split (NB-OPFS) 

framework is employed at aggregate level to jointly estimate crash frequency by crash type and 

severity. Specifically, the NB component models the number of crashes by type and the OPFS 

component determines the proportion of each severity in the pooled dataset for a zone. At 

disaggregate level, the crash type variable is examined using multinomial logit (MNL) model and 

crash severity variable is examined using a pooled ordered probit (OP) model. The integrated 

approach can take two potential forms with these models. In the first structure, the MNL model 

propensity and the pooled OP model propensity across the crashes in the zone are computed as 
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composite scores and treated as exogenous variables i.e., the crash type and severity model 

parameters are fixed. In this approach, two additional parameters for the composite variables are 

estimated for each crash type in the panel mixed NB-OPFS model i.e., the composite score of 

MNL is included in the count and score for OP is included in the severity proportion components. 

Alternatively, composite scores can be treated as endogenous and be estimated simultaneously 

within the panel mixed NB-OPFS model. In this approach, the estimates of the disaggregate 

models will be allowed to vary while modeling crash frequency. The second approach is 

computationally more involved as it allows for feedback between aggregate and disaggregate level 

models. The model selection process can be accomplished using model fit measures such as 

Bayesian Information Criterion (BIC). 

The proposed model system is estimated using data drawn from the City of Orlando, 

Florida for the year 2019. The study considers three crash types: rear end, angular, and sideswipe 

for the analysis. These three crash types comprise 15,518 crash records for the disaggregate level 

model analysis. The records contain crash specific factors, driver and vehicle factors, roadway 

attributes, road environmental and weather information of each crash record. For the aggregate 

level analysis, these crash records are aggregated over 300 traffic analysis zones (TAZs). An 

exhaustive set of independent variables including roadway and traffic characteristics, land-use 

attributes, built environment factors, and sociodemographic characteristics are considered in this 

level. The results of the empirical analysis further bolster the importance of developing such an 

integrated framework for aggregate level crash frequency and disaggregate level discrete crash 

outcome analysis. 

 

3. METHODOLOGY 

In this study, we employ a panel mixed NB-OPFS model and an integrated modeling framework 

to jointly estimate crash frequency by crash type and severity. However, for the sake of space, we 

will restrict ourselves in presenting the integrated framework only. Further, within the integrated 

framework, there are two components: the disaggregate level models (MNL and pooled OP) and 

the aggregate level model (panel mixed NB-OPFS). For the ease of presentation, we will discuss 

the methodology by each component.  

 

3.1 Disaggregate Level Model Structures (MNL and Pooled OP Models) 

 

3.1.1 Multinomial Logit (MNL) Model 

Let us consider the probability of a crash record  𝑗(𝑗 = 1,2,3, … , 𝑛) ending in a specific crash type  

𝑙 (𝑙 = 1,2, … , 𝐿). In this study we consider three crash types: rear end, angular, and sideswipe. The 

alternative specific latent variables for MNL take the form of: 

 

𝑞𝑗𝑙 = 𝜳𝒍Ү𝒋𝒍 + е𝑗𝑙 (1)  

 

where 𝑞𝑗𝑙 is a function of covariates determining the crash type, 𝜳𝒍 is a vector of coefficients to 

be estimated for outcome of 𝑗, Ү𝒋𝒍 is a vector of exogenous variables, and е𝑗𝑙 is the random 

component assumed to follow a  gumbel type 1 distribution. Thus, the MNL probability expression 

is as follows: 

 

𝑃𝑗(𝑙) =
𝑒𝑥𝑝 [𝜳𝒍Ү𝒋𝒍]

∑ 𝑒𝑥𝑝 [𝜳𝒍Ү𝒋𝒍]
𝐿
𝑙=1

 (2)  
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Considering the spatial arrangement of the crash records within the same zone, i.e., the 

adjacency heterogeneity (dependency), the equation for MNL model propensity can be updated 

as, 

 

𝑞′𝑗𝑙 = 𝜳𝒍Ү𝒋𝒍 + 𝜽𝑖𝑙 + е𝑗𝑙 (3)  

 

where, 𝑖 (𝑖 = 1,2,3, … , 𝑁) is the index for traffic analysis zone (TAZ). 𝑞′𝑗𝑙 is the latent propensity 

capturing spatial dependency and 𝜽𝑖𝑙 is a vector of unobserved effects specific to the zone for the 

crash records of type 𝑙, highlighting the spatial arrangement within the same zone. This 𝜽𝑖𝑙 will be 

same across the crash records of type 𝑙 if they correspond to same zone (TAZ) and thus the 

adjacency heterogeneity (dependency) will be captured through the proposed system. The reader 

would note that, the spatial unobserved heterogeneity can vary across the crash records. Therefore, 

in the current study, we parameterize the correlation parameter  𝜽𝑖𝑙 as a function of observed 

attributes as follows: 

 

 𝜽𝑖𝑙 = 𝜸𝑖𝑙𝒔𝑖𝑙 

 
(4)  

where, 𝒔𝑖𝑙 is a vector of exogenous variables at the zonal level 𝑖 (including a constant) employed 

for crash records of type l, 𝜸𝑖𝑙 is a vector of parameters to be estimated. Therefore, the updated 

probability function will be as follows: 

 

𝑃′𝑗(𝑙) =
𝑒𝑥𝑝 [𝜳𝒍Ү𝒋𝒍 +  𝜽𝑖𝑙]

∑ 𝑒𝑥𝑝 [𝜳𝒍Ү𝒋𝒍 +  𝜽𝑖𝑙]
𝐿
𝑙=1

 (5)  

 

3.1.2 Pooled Ordered Probit (OP) Model 

In the traditional ordered outcome model, the discrete injury severity levels (𝑣𝑗𝑙) of crash record 𝑗  

and crash type 𝑙 are assumed to be associated with an underlying continuous latent variable (𝑣𝑗𝑙
∗ ). 

For the pooled dataset, this latent variable can be specified as the following linear function:   

𝑣𝑗𝑙
∗ = 𝑋𝑗𝑙Θ + 𝜀𝑗𝑙 (6)  

where 𝑋𝑗𝑙 is a vector of exogenous variables (excluding a constant), Θ is a vector of unknown 

parameters to be estimated, and 𝜀𝑗𝑙 is the random disturbance term assumed to be standard normal 

distribution. Let us assume  𝑘 (𝑘 = 1,2,3, … , 𝐾) be the index to represent injury severity 

categories. In this study, 𝑘 take the values of ‘no-injury’ (𝑘 = 1), ‘possible injury’ (𝑘 = 2), ‘non-

incapacitating injury’ (𝑘 = 3) and ‘fatal and incapacitating injury’ (𝑘 = 4). The unobservable 

latent variable 𝑣𝑗𝑙
∗  is related to the observable ordinal variable 𝑣𝑗𝑙  by the 𝑡𝑙𝑘 with an outcome 

mechanism of the following form: 

𝑣𝑗𝑙 = 𝑙𝑘, 𝑖𝑓 𝑡𝑙,𝑘−1 <  𝑣𝑗𝑙
∗ < 𝑡𝑙𝑘  (7)  

where 𝑡𝑙𝑘 represents the thresholds associated with the severity levels for crash type 𝑙. These 

unknown 𝑡𝑙𝑘s are assumed to partition the propensity into 𝑙𝑘 − 1 intervals. In order to ensure the 

well-defined intervals and natural ordering of observed severity, the thresholds are assumed to be 

ascending in order, such that 𝑡𝑙0 < 𝑡𝑙1 <  … … … < 𝑡𝑙𝐾 where 𝑡𝑙0 = −∞ and 𝑡𝑙𝐾 = +∞. Given 
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these relationships across the different parameters, the resulting probability expressions 𝜋𝑗𝑙𝑘, for 

record 𝑗 and alternative 𝑘 for the ordered probit (OP) take the following form: 

𝜋𝑗𝑙𝑘 = 𝑃𝑟(𝑣𝑗𝑙 = 𝑙𝑘|𝑋𝑗𝑙) = Υ(𝑡𝑙𝑘 − 𝑋𝑗𝑙Θ) − Υ(𝑡𝑙,𝑘−1 − 𝑋𝑗𝑙Θ) (8)  

where Υ(. ) represents the standard normal distribution function. 

 

Considering the spatial arrangement of the crash records within the same zone, i.e., the 

adjacency heterogeneity (dependency), the equation for disaggregate level pooled OP model 

propensity can be updated as, 

𝑣𝑗𝑙
∗′ = 𝑋𝑗𝑙Θ + 𝜽𝑖𝑙 + 𝜀𝑗𝑙 (9)  

where, 𝑣𝑗𝑙
∗′ is the latent propensity capturing spatial dependency. With the updated propensity, the 

probability expression is:   

𝜋′𝑗𝑙𝑘 = 𝑃𝑟(𝑣𝑗𝑙
∗′ = 𝑙𝑘|𝑋𝑗𝑙) = Υ(𝑡𝑙𝑘 − (𝑋𝑗𝑙Θ + 𝜽𝑖𝑙)) − Υ(𝑡𝑙,𝑘−1 − (𝑋𝑗𝑙Θ + 𝜽𝑖𝑙)) (10)  

 

3.2 Aggregate Level Model Structure (Panel Mixed NB-OPFS Model) 

 

3.2.1 Count Framework 

In our study, the count framework estimates number of crashes by type using a panel mixed 

univariate negative binomial (NB) modeling framework. We arrange the dataset by taking all three 

crash types as repeated measures (same TAZ is repeated 3 times) of crash frequency in a univariate 

NB formulation while recognizing that each repetition represents a different crash type.  

Once the disaggregate level MNL propensities are estimated, we adopt two alternative 

approaches to estimate the aggregate (zonal) level propensities for count component. With the 

TAZ index 𝑖 and crash type index 𝑙, the two approaches are presented in equation 11 and equation 

12 respectively.  

 

𝜇𝑖𝑙 = 𝐸(𝑐𝑖𝑙|𝒛𝑖𝑙)

= 𝑒𝑥𝑝 ((𝜹 + 𝜻𝑖 + 𝜻′𝑖𝑙)𝒛𝑖𝑙 + 𝜌𝑐𝑙 ∗ ln (∑ (𝑒𝑥𝑝(𝑞′𝑗𝑙))

𝑗𝑖𝑙

𝑝=1

) + 𝜀𝑖𝑙

+ 𝜂𝑖𝑙) 

(11)  
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𝜇𝑖𝑙 = 𝐸(𝑐𝑖𝑙|𝒛𝑖𝑙)

= 𝑒𝑥𝑝 ((𝜹 + 𝜻𝑖 + 𝜻′𝑖𝑙)𝒛𝑖𝑙 + 𝜌𝑐𝑙

∗ ln (∑ (𝑒𝑥𝑝(𝜳𝒍Ү𝒋𝒍 + 𝜽𝑖𝑙 + е𝑗𝑙))

𝑗𝑖𝑙

𝑝=1

) + 𝜀𝑖𝑙 + 𝜂𝑖𝑙) 

(12)  

 

where, 𝒛𝑖𝑙 is a vector of explanatory variables associated with TAZ 𝑖 and crash type 𝑙, 𝜹 is a vector 

of coefficients to be estimated, 𝜻𝑖 is a vector of unobserved factors on crash count propensity for 

TAZ 𝑖, 𝜻′𝑖𝑙 is a vector of unobserved factors specific to the crash type 𝑙 and 𝜌𝑐𝑙 is scalar associated 

with the disaggregate level highlighting the share of disaggregate level MNL model propensity to 

be linked with the aggregate level propensity for count component for each crash type. p is a 

counter here ranging from 1 to 𝑗𝑖𝑙 represents the crash record 𝑗 of crash type 𝑙 in zone 𝑖. For 

example, if 5 rear end crashes occur in the zone i, then we will sum the propensity for these 5 

crashes to obtain a value for 𝑗𝑖𝑙 for rear end crash type. The reader would note that the proposed 

framework allows disaggregate level information flow from propensity for a crash type/severity 

into the aggregate (zonal) level propensity equation if and only if the zone has that crash 

type/severity. Therefore, if there is no crash record (zero state) in a zone, no disaggregate level 

information (no score from the crash type/severity propensity) is carried out to the aggregate level 

and hence only aggregate level variables information prevail in the equation for that zone. It is also 

important to note that the aggregate propensity is determined by the overall interaction of aggregate 

variables and disaggregate composite score. 𝜀𝑖𝑙 is a gamma distributed error term with mean 1 and 

variance 𝛼. 𝜂𝑖𝑙 captures unobserved factors that simultaneously impact number of crashes and 

proportion of crashes by severity for each crash type in TAZ 𝑖. In estimating the model, it is 

necessary to specify the structure for the unobserved vectors 𝜻𝑖 and  𝜻′𝑖𝑙 represented by 𝜻′′. In this 

paper, it is assumed that these elements are drawn from independent normal distribution: 𝜻′′~𝑁 (0, 

(𝝈1
2, 𝝈2

2)). 

The main difference between the two approaches is that the disaggregate level propensity 

will remain fixed and only the scalar parameters will be estimated in approach 1 (exogenous 

approach). In the second approach (endogenous approach), we allow the disaggregate level 

parameters to be jointly influenced by disaggregate and aggregate level model fit.  

For the count model, the equation for modeling crash count of type 𝑙 in the usual NB 

formulation can be written as: 

 

𝑃(𝑐𝑖𝑙) =  
Γ (𝑐𝑖𝑙 +

1
𝛼)

Γ(𝑐𝑖𝑙 + 1)Γ (
1
𝛼)

(
1

1 + 𝛼𝜇𝑖𝑙
)

1
𝛼

(1 −
1

1 + 𝛼𝜇𝑖𝑙
)

𝑐𝑖𝑙

 (13)  

 

where 𝑐𝑖𝑙 be the index for crashes of type 𝑙 occurring over a period of time in TAZ 𝑖. 𝑃(𝑐𝑖𝑙) is the 

probability that TAZ 𝑖 has 𝑐𝑖𝑙 number of crashes for crash type 𝑙. Γ(∙) is the gamma function, 𝛼 is 

NB overdispersion parameter and 𝜇𝑖𝑙 is the expected number of crashes for crash type 𝑙 occurring 

in TAZ 𝑖 over a given time period (as presented in the equation 11 and equation 12).  
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3.2.2 Fractional Split Framework 

The modeling of crash proportions by severity levels for crash type 𝑙 is undertaken using a panel 

mixed ordered probit fractional split (OPFS) model. In the ordered outcome framework, the actual 

injury severity proportions (𝑦𝑖𝑙𝑘) are assumed to be associated with an underlying continuous 

latent variable (𝑦𝑖𝑙
∗ ). Following the same approach as presented in the count component, we adopt 

two alternative approaches to estimate latent propensity equation as follows: 

 

𝑦𝑖𝑙
∗ = ((𝜷 + 𝝆𝒊 + 𝝆′𝒊𝒍)𝒙𝑖𝑙 +  𝜌𝑓𝑙 ∗ ln (∑ (𝑒𝑥𝑝(𝑣𝑗𝑙

∗′))
𝑗𝑖𝑙

𝑝=1
) + 𝜉𝑖𝑙 ± 𝜂𝑖𝑙), 𝑦𝑖𝑙𝑘 =

𝑙𝑘 𝑖𝑓 𝜏𝑙,𝑘−1 < 𝑦𝑖𝑙
∗ < 𝜏𝑙𝑘 

(14)  

𝑦𝑖𝑙
∗ = ((𝜷 + 𝝆𝒊 + 𝝆′𝒊𝒍)𝒙𝑖𝑙 +  𝜌𝑓𝑙 ∗ ln (∑ (𝑒𝑥𝑝(𝑋𝑗𝑙Θ + 𝜽𝑖𝑙 + 𝜀𝑗𝑙))

𝑗𝑖𝑙

𝑝=1
) + 𝜉𝑖𝑙 ±

𝜂𝑖𝑙), 𝑦𝑖𝑙𝑘 = 𝑙𝑘 𝑖𝑓 𝜏𝑙,𝑘−1 < 𝑦𝑖𝑙
∗ < 𝜏𝑙𝑘 

(15)  

 

The latent propensity 𝑦𝑖𝑙
∗  is mapped to the actual severity proportion categories 𝑦𝑖𝑙𝑘 by 𝜏 thresholds 

(𝜏𝑙0 = −∞ 𝑎𝑛𝑑 𝜏𝑙𝐾 = +∞) as presented in equation 14 and equation 15. 𝒙𝑖𝑙 is a vector of 

attributes (not including a constant) that influences the propensity associated with severity 

proportion categories of the three crash types. 𝜷 is the corresponding vector of mean effects, 𝝆𝒊 is 

a vector of unobserved factors on severity proportion propensity for TAZ 𝑖, 𝝆′𝒊𝒍 is a vector of 

unobserved factors specific to the crash type 𝑙. In estimating the model, it is necessary to specify 

the structure for the unobserved vectors 𝝆𝒊 and 𝝆′𝒊𝒍  represented by 𝝆′′. In this paper, it is assumed 

that these elements are drawn from independent normal distribution: 𝝆′′~𝑁 (0, (𝝈3
2, 𝝈4

2)). 𝜌𝑓𝑙 is a 

scalar associated with the disaggregate level highlighting the share of disaggregate level propensity 

to be linked with the aggregate level propensity for fractional split component for crash type 𝑙.  𝜉𝑖𝑙 

is an idiosyncratic error term assumed to be identically and independently standard normally 

distributed across TAZ 𝑖. 𝜂𝑖𝑙 term generates the correlation between equations for number of 

crashes and crash proportions by severity levels of crash type 𝑙. The ± sign in front of 𝜂𝑖𝑙 indicates 

that the correlation in unobserved individual factors between crash counts and crash proportions 

by severity levels may be positive or negative. A positive sign implies that TAZs with higher 

number of crashes with type 𝑙 are intrinsically more likely to incur higher proportions for severe 

crashes. On the other hand, negative sign implies that TAZs with higher number of crashes of type 

𝑙 intrinsically incur lower proportions for severe crashes. To determine the appropriate sign one 

can empirically test the models with both ′ + ′ and ′ − ′ signs independently. The model structure 

that offers the superior data fit is considered as the final model. 

It is important to note here that the unobserved heterogeneity between the number of 

crashes by type and crash proportions by severity levels can vary across TAZs. Therefore, in the 

current study, the correlation parameter 𝜂𝑖𝑙 is parameterized as a function of observed attributes as 

follows: 

 

𝜂𝑖𝑙 = Ԍ𝑖𝑙Ԛ𝑖𝑙 (16)  

 

where, Ԛ𝑖𝑙 is a vector of exogenous variables, Ԍ𝑖𝑙 is a vector of unknown parameters to be estimated 

(including a constant). 

To estimate the model presented in equation 14 and equation 15, we assume that:    
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𝐸(𝑦𝑖𝑙𝑘|𝒙𝑖𝑙) = 𝐻𝑖𝑙𝑘(𝛽, 𝜏), 0 ≤ 𝐻𝑖𝑙𝑘 ≤ 1, ∑ 𝐻𝑖𝑙𝑘 = 1𝐿𝐾
𝑙𝑘=1  (17)  

 

𝐻𝑖𝑙𝑘 in our model takes the ordered probit probability (Λ) form for the crash type 𝑙 and severity 

category 𝑘.  

Given these relationships across different parameters, the resulting probability (Λ) for the 

panel mixed OPFS model takes the following form:  

 

Λ(𝑦𝑖𝑙𝑘 = 𝑙𝑘) = φ{𝜏𝑙𝑘 − (𝑦𝑖𝑙
∗ )} − φ{𝜏𝑙,𝑘−1 − (𝑦𝑖𝑙

∗ )} (18)  

 

where, φ(∙) is the standard normal cumulative distribution function.  

 

3.3 Model Estimation 

In examining the model structure of crash count by crash type and severity proportions, we specify 

the structure for the unobserved vectors 𝜻′′, 𝝆′′, 𝜸 and Ԍ represented by Ω. In this study, it is 

assumed that these elements are drawn from independent realization from normal population: 

Ω~𝑁(0, (𝝈1
2, 𝝈2

2, 𝝈3
2, 𝝈4

2, 𝝈5
2, 𝝈6

2)). Thus, conditional on Ω, the likelihood function for the 

integrated probability can be expressed as: 

 

𝐿𝑖 = ∫ ∏ [𝑃(𝑐𝑖𝑙) × ∏(Λ(𝑦𝑖𝑙𝑘 = 𝑙𝑘))
𝜛𝑖𝑙𝑑𝑖𝑙𝑘

𝐾

𝑘=1

𝐿

𝑙=1Ω

× ∏ (𝑃′𝑗(𝑙) ×  ∏ 𝜋′𝑗𝑙𝑘

𝐾

𝑘=1

)

𝑗𝑖

𝑝=1

𝑑Ω] 

(19)  

where, 𝜛𝑖𝑙 is a dummy with 𝜛𝑖𝑙 = 1 if TAZ 𝑖 has at least one crash of type 𝑙 over the study period 

and 0 otherwise. 𝑑𝑖𝑙𝑘 is the proportion of crashes of type 𝑙 in severity category k. Finally, the log-

likelihood function is:     

   

𝐿𝐿 = ∑ 𝐿𝑛(𝐿𝑖)

𝑖

 (20)  

All the parameters in the model are estimated by maximizing the logarithmic function 𝐿𝐿 

presented in equation 20. To estimate the proposed model, we apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function across 

individuals (please see Bhat, 2001; Yasmin and Eluru, 2013 for details). In our research, we tested 

the model specification with several realization levels (such as 50, 100, …, 200). We found that 

model parameters were stable around 100. We use the GAUSS matrix programming software to 

run the models (Aptech, 2015).  

 

4. DATA PREPARATION  

The data for our analysis is drawn from 2019 Signal Four Analytics (S4A) data for 300 traffic 

analysis zones (TAZs) in the City of Orlando, Florida. After processing and cleaning the data, a 

total of 20,204 crash records were obtained in the study area. Among these records, angle crashes, 

left turn and right turn crashes, rear end and sideswipe crashes comprise a total of 15,518 records. 
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This study combined angle crashes, left turn and right turn crashes and labelled them as angular 

crash type. The distribution of the angular (ANG), rear end (RE) and sideswipe (SS) crash types 

in the dataset is 23.41%, 55.52% and 21.07%, respectively. Each crash record could be further 

classified into 5 categories by crash severity outcomes such as fatal injury (FI), incapacitating 

injury (II), non-incapacitating injury (NII), possible injury (PI) and no-injury crashes (NI). This 

study combines fatal and incapacitating injury crashes as fatal and incapacitating injury (FII) 

crashes for disaggregate level model estimation. The disaggregate level models consider crash 

specific variables (such as first harmful event), driver factors (such as driving under influence 

related, distraction related), vehicle factors (such as presence of passengers), roadway 

characteristics (such as speed limit, shoulder type), road environmental factors (such as time of the 

day, light condition) and weather information (such as clear, rain) for the analysis.  

For aggregate level model analysis, the study aggregated crash data by crash type over 300 

TAZs. In the aggregation, each TAZ is repeated three times for three separate crash types and 

constitutes a panel data structure. For the count component, the number of crashes by crash type 

is considered as the dependent variable. For the severity component, four severity levels are 

considered and the dependent variable for fractional split component (represented as OPFS model) 

can be represented as proportions (number of specific severity level of type 𝑙/total number of all 

crashes of type 𝑙) as follows: (1) proportion of no-injury crashes (2) proportion of possible injury 

crashes (3) proportion of non-incapacitating injury crashes, and (4) proportion of fatal and 

incapacitating injury crashes. A comprehensive set of independent variables including roadway 

and traffic factors, land-use attributes, built environment factors, and sociodemographic 

characteristics are considered for the analysis of this level. This study selects 255 TAZs randomly 

for model estimation resulting in a sample of 13,253 crash records. The remaining 45 TAZs with 

2,265 crash records are set aside for the validation of the models.  

 

4.1 Variables Considered 

The variables for disaggregate and aggregate levels analysis were collected from different data 

sources including Signal Four Analytics (S4A), Florida Department of Transportation (FDOT) 

Transportation Statistics Division, US Census Bureau and American Community Survey, and 

Florida Geographic Data Library databases. These explanatory variables were aggregated at the 

zonal level using the ArcGIS for aggregate level dataset. Aggregate level analysis uses roadway 

and traffic characteristics (such as proportion of roads by functional class, average number of lanes, 

average speed limit, average shoulder width, sidewalk width and median width, intersection 

density, traffic signal density, AADT, and truck AADT), land-use attributes (such as proportion 

of residential, commercial, institutional, industrial, recreational and mixed areas), built 

environment attributes (such as number of restaurants, business centers, commercial centers, 

educational centers, and shopping centers), and sociodemographic characteristics (such as 

population density, proportion of males and females, household density, median household 

income, proportion of car, drive alone, non-motorized means of transport, different population 

group by age level, household with vehicle availability, and population with different races).  

In estimating the models, several functional forms and combination of variables are 

considered and those variables that provide the best fit are retained in the final specification. The 

final specifications of the models are based on removing the statistically insignificant variables in 

a systematic process based on 90% confidence level. Figure 1a and 1b show the sample share of 

the variables at disaggregate level considered for the final model estimation while the aggregate 

level variables are presented in Table 1 with the appropriate definitions and summary statistics. 
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Figure 1a: Sample Share of the Variables at Disaggregate Level (n = 15,518) 
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Figure 1b: Sample Share of the Variables at Disaggregate Level (n = 15,518) 
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Table 1: Summary Statistics of the Variables at Aggregate Level (N = 300 TAZs) 

Variables Definition Min Max Mean Std. Dev. 

Dependent Variables 

Rear End      

Total rear end crashes Total no. of rear end crashes in a TAZ 0.000 178.000 28.720 27.848 

P_FII in rear end Proportion of FII in rear end crashes 0.000 0.250 0.009 0.025 

P_NII in rear end Proportion of NII in rear end crashes 0.000 0.500 0.070 0.076 

P_PI in rear end Proportion of PI in rear end crashes 0.000 1.000 0.213 0.127 

P_NI in rear end Proportion of NI in rear end crashes 0.000 1.000 0.698 0.157 

Angular       

Total angular crashes Total no. of angular crashes in a TAZ 0.000 78.000 12.107 11.204 

P_FII in angular Proportion of FII in angular crashes 0.000 1.000 0.027 0.085 

P_NII in angular Proportion of NII in angular crashes 0.000 1.000 0.120 0.133 

P_PI in angular  Proportion of PI in angular crashes 0.000 1.000 0.233 0.194 

P_NI in angular  Proportion of NI in angular crashes 0.000 1.000 0.570 0.258 

Sideswipe      

Total sideswipe crashes Total no. of sideswipe crashes in a TAZ 0.000 110.000 10.900 12.945 

P_FII in sideswipe  Proportion of FII in sideswipe crashes 0.000 0.500 0.008 0.040 

P_NII in sideswipe Proportion of NII in sideswipe crashes 0.000 0.667 0.030 0.080 

P_PI in sideswipe  Proportion of PI in sideswipe crashes  0.000 1.000 0.084 0.125 

P_NI in sideswipe  Proportion of NI in sideswipe crashes  0.000 1.000 0.795 0.280 

Roadway Characteristics 

Proportion of interstate-

expressways  

Interstate-expressways length/total road 

length 
0.000 1.000 0.095 0.200 

Proportion of arterial 

road 
Arterial road length/total road length  0.000 1.000 0.451 0.358 

Proportion of local road  Local road length/total road length  0.000 0.613 0.027 0.099 

Avg. no. of lanes Average number of lanes in road  1.000 3.500 1.963 0.489 

Avg. inside shoulder 

width 
Average inside shoulder width, ft 0.000 18.000 3.008 3.742 

Avg. outside shoulder 

width 
Average outside shoulder width, ft 0.000 12.000 4.349 2.013 

Proportion of road <40 

mph 

Length of <40 mph roads/ total road 

length 
0.000 1.000 0.496 0.397 

Proportion of road >55 

mph 

Length of >55 mph roads/ total road 

length 
0.000 1.000 0.105 0.234 

Proportion of divided 

road 

Total divided road length/total road 

length 
0.000 1.000 0.610 0.357 

Intersection density Number of intersections/area of TAZ  0.000 0.770 0.085 0.115 

Avg. bike lane length Average bike lane length in TAZ 0.000 3.065 0.177 0.332 

Traffic Characteristics 

AADT Ln (AADT of TAZ) 8.412 13.507 11.189 1.864 

Land-use Attributes 

Proportion of 

institutional area 
Total institutional area/TAZ area 0.000 0.991 0.076 0.139 

Proportion of 

commercial area 
Total commercial area/TAZ area 0.000 1.000 0.242 0.274 

*Land-use mix Mixed land-use areas/TAZ area 0.000 0.957 0.418 0.242 

Built Environment Attributes 

No. of educational 

centers 

**Z score: Number of educational 

centers 
-0.649 3.879 0.000 1.000 

No. of restaurants Z score: Number of restaurants -0.597 6.690 0.000 1.000 

No. of shopping centers Z score: Number of shopping centers -0.495 9.698 0.000 1.000 

Sociodemographic Factors 
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Variables Definition Min Max Mean Std. Dev. 

NMT transport Ln (Non-motorized transport means +1) 0.000 4.955 2.128 1.162 

Proportion of white 

American population 

Total white American population /total 

population in TAZ 
0.010 0.890 0.410 0.220 

Proportion of African 

American population 

Total African American population /total 

population in TAZ 
0.000 0.978 0.223 0.246 

*Land-use mix = [−
∑(𝑚ℎ(𝑙𝑛 𝑚ℎ))

𝑙𝑛 𝑅
], where h is the category of land-use, m is the proportion of the developed land area 

for specific land-use, R is the number of land-use categories; here R= 5 [residential, industrial, institutional, 

commercial (including office areas) and recreational areas]. 

**Z-score represents the standardized form of the actual variable. 

 

 

5. EMPIRICAL ANALYSIS  

 

5.1 Model Specification and Overall Measure of Fit 

A series of models were estimated for the empirical analysis of the proposed framework. First, we 

estimated the MNL model for crash type, independent OP models for each crash type and a pooled 

OP model for disaggregate level crash analysis, and independent NB-OPFS models for each crash 

type and a panel mixed NB-OPFS model for jointly estimating aggregate level crash count by 

crash type and severity. The independent model components together provide the benchmark 

model for comparison. Second, we developed our proposed integrated model system following 

two approaches: a) exogenous model system: focusing on optimizing the joint log-likelihood of 

the aggregate and disaggregate level models by only estimating the parameters for propensities 

aggregated from the disaggregate level models (one parameter per model component i.e., count 

and severity proportion for each crash type) as shown in equations 11 and 14, and b) endogenous 

model system: the disaggregate level parameters are estimated based on their contributions to the 

disaggregate level and the aggregate level models through the disaggregate level propensity 

components embedded within the aggregate level propensity equation (as shown in equations 12 

and 15). Third, we identified the best model by comparing the model performance based on 

Bayesian Information Criterion (BIC). The BIC for a given empirical model is equal to: 

BIC= -2LL+Np Ln (Ob) (21)  

where LL is the log-likelihood value at convergence, Np is the number of parameters and Ob is the 

number of observations. The model with the lower BIC is the preferred model.  

The corresponding BIC (LL) values of the models are: (1a) independent model system 

(MNL, OP, and NB-OPFS) (with 108 parameters): 50,020.544 (-24,651.719), (1b) non-integrated 

model (MNL, pooled OP, and panel mixed NB-OPFS) (with 80 parameters): 49,872.460 (-

24,670.635), (2) exogenous model (with 70 parameters): 48,839.107 (-24,187.158), (3) 

endogenous model (with 67 parameters): 48,851.165 (-24,203.147), and (4) exogenous model with 

unobserved heterogeneity (with 74 parameters): 48,829.406 (-24,169.028). Based on the BIC 

values, three specific observations could be drawn. First, the panel modeling approaches provide 

improved data fit compared to independent models with lower BIC values supporting the findings 

of previous studies (Bhowmik et al., 2021b, 2019). Second, all the integrated systems provide 

improved data fit as evidenced by the lower BIC values in comparison to the non-integrated model. 

Third, within the integrated systems, our proposed exogenous model provides the lowest BIC 

indicating the best data fit in comparison to the proposed endogenous model. Finally, we 
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accommodate unobserved heterogeneity in our exogenous model (the best model in terms of data 

fit) and find that the model provides further improved BIC (lower). 

 

5.2 Model Estimation Results 

This section provides a detailed discussion of the exogenous variables affecting the crash count by 

crash type and severity at aggregate level and the factors influencing the crash outcome variables 

at the disaggregate level models. Table 2 presents the model estimation results for exogenous 

model with unobserved heterogeneity. The reader would note that the different model components 

(except for crash type) were estimated using a pooled estimation process i.e., a common parameter 

was estimated across the three components and interactions were used to identify deviations across 

the three crash types. If the deviations were significant, they were retained or else dropped. The 

number of parameters in Table 2 describes the number of unique statistical parameters for the 

model component from a possible set of three (one effect for each crash type). The reader would 

also note that a positive (negative) sign for a variable in Table 2 indicates that an increase in the 

variable is likely to result in more (less) crashes as well as exhibit a higher (lower) impact on crash 

type and severity. The results of the non-integrated model system (MNL, pooled OP and panel 

mixed NB-OPFS models) with the net variable effects are presented in Table A.1 and Table A.2 

of the Appendix. 

 

5.3 Disaggregate Level Attributes  

 

5.3.1 Crash Type Component 

The constant variables in the crash type model do not have substantive interpretation after 

including independent variables.  

Among driver attributes, driving under the influence reduces the risk of sideswipe crash 

type and increases risk for other crash types (see Neyens and Boyle, 2007; Razi-Ardakani et al., 

2018 for similar results). The crashes that are distraction related are more likely to result in angular 

crashes and less likely to result in sideswipe crashes (relative to rear end crashes). In the presence 

of passengers, the findings indicate that angular crashes are more likely to occur.  

The posted speed limit variable offers interesting findings. The likelihood of angular and 

sideswipe crash types is higher for road sections with posted speed limit <40mph (relative to rear 

end crash type). On the other hand, for road sections with posted speed limit >55mph the likelihood 

of angular crash type is lower (relative to other crash types). The results indicate how posted speed 

limit potentially affects crash types. The model results offer interesting results for intersection 

location. We find that the propensity of angular crashes is higher relative to rear end and sideswipe 

crashes at intersections. The finding might be reflective of the turning movements occurring at 

intersections potentially resulting in angular crashes. The presence of a curb shoulder also 

increases the propensity for angular crashes. In the presence of curb shoulder, drivers might 

consider riskier maneuvers for turning potentially resulting in angular crashes. The pavement 

condition being wet increases the propensity for rear end crashes. On a wet surface, vehicles are 

likely to slip and lose traction resulting in higher incidence of rear end crashes. All these findings 

are consistent with many previous studies (Bhowmik et al., 2019; Razi-Ardakani et al., 2018). 
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Table 2: Results of the Integrated (Exogenous Model) with Unobserved Heterogeneity with Net Variable Effects 

Disaggregate Level  

Variables 

MNL Model Propensity (Base: Rear End) OP Model Propensity 

Angular Sideswipe  Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant (2, --) * -2.448 -36.557 -0.733 -13.750 -- -- -- -- -- -- 

Threshold Parameters           

Threshold between NI-PI (--, 3) -- -- -- -- 0.671 29.019 0.372 9.125 1.299 36.120 

Threshold between PI-NII (--, 3) -- -- -- -- 1.604 3.130 1.103 9.482 1.937 7.281 

Threshold between NII-FII (--,1) -- -- -- -- 2.548 1.827 2.047 1.827 2.882 1.827 

Driver and Vehicle Factors           

DUI related (if yes 1, otherwise 0) (1, 1) -- -- -0.689 -2.512 0.525 4.419 0.525 4.419 -- -- 

Distraction related (if yes 1, otherwise 0) (2, 1) 0.190 3.050 -0.544 -8.880 0.238 8.953 0.238 8.953 0.238 8.953 

With passengers (if yes 1, otherwise 0) (1, 1) 0.133 2.648 -- -- 0.336 14.847 0.336 14.847 0.336 14.847 

Roadway Characteristics           

Posted speed limit (Base: 40-55mph)           

Posted speed limit<40 (2, 1) 0.199 3.750 0.181 3.982 -0.082 -3.574 -0.082 -3.574 -0.082 -3.574 

Posted speed limit>55 (1, --) -0.314 -2.865 -- -- -- -- -- -- -- -- 

At intersection (if yes 1, otherwise 0) (1, --) 2.717 53.507 -- -- -- -- -- -- -- -- 

Curb shoulder (if yes 1, otherwise 0) (1, 1) 0.504 9.985 -- -- -- -- -0.133 -3.063 -- -- 

Wet surface (if yes 1, otherwise 0) (2, 1) -0.345 -4.348 -0.341 -4.791 -- -- -- -- 0.307 2.237 

Road Environmental and Weather Factors           

Time (Base: Off-peak evening, late evening)           

Late night (12:00-6:30) (1, 1) -- -- 0.211 2.410 0.232 4.629 0.232 4.629 -- -- 

Peak morning (6:30-9:00) (1, --) -- -- -0.337 -4.832 -- -- -- -- -- -- 

Off-peak morning (9:00-12:00) (--, 1) -- -- -- -- -- -- 0.139 2.228 -- -- 

Peak evening (16:00-18:30) (1, 1) -- -- -0.220 -3.785 -0.086 -2.460 -- -- -- -- 

Peak morning and peak evening (1, --) -0.163 -3.009 -- -- -- -- -- -- -- -- 

Season (Base: Summer)           

Winter (1, --) -- -- -0.163 -2.666 -- -- -- -- -- -- 

Spring (1, --) -- -- -0.120 -1.990 -- -- -- -- -- -- 

Autumn (1, --) -- -- -0.182 -2.953 -- -- -- -- -- -- 

Light condition (Base: Day light, dawn/dusk)         

Dark lighted (1, --) -- -- 0.160 2.761 -- -- -- -- -- -- 

Dark not lighted (1, --) 0.505 2.789 -- -- -- -- -- -- -- -- 

Weather condition (Base: Clear)           

Rainy (--, 1) -- -- -- -- -- -- -- -- -0.455 -2.421 

Fog and wind (--, 1) -- -- -- -- -- -- -2.946 -9.928 -- -- 
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Aggregate Level 

Variables 

Count Component Severity Proportion Component 

Rear End Angular Sideswipe Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant (3, --) -0.765 -6.027 -1.436 -11.275 -0.977 -8.207 -- -- -- -- -- -- 

Threshold Parameter             

Threshold between P_NI-P_PI (--, 2) -- -- -- -- -- -- 0.262 2.673 0.262 2.673 1.404 9.495 

Threshold between P_PI-P_NII (--, 3) -- -- -- -- -- -- 1.146 3.372 1.048 4.827 2.045 4.801 

Threshold between P_NII-P_FII (--, 1) -- -- -- -- -- -- 2.013 2.386 1.916 2.386 2.913 2.386 

Roadway and Traffic Characteristics              

AADT (1, --) 0.021 2.320 0.021 2.320 0.021 2.320 -- -- -- -- -- -- 

Proportion of interstate-expressways (--, 1) -- -- -- -- -- -- 0.210 2.001 -- -- -- -- 

Proportion of local road (--, 1) -- -- -- -- -- -- -- -- -- -- -0.927 -2.590 

Avg. no. of lanes (--, 1) -- -- -- -- -- -- -0.257 -9.396 -- -- -- -- 

Avg. inside shoulder width (1, 1) 0.009 1.944 -- -- -- -- -- -- -0.026 -3.651 -0.026 -3.651 

Avg. outside shoulder width (--, 1) -- -- -- -- -- -- -- -- -- -- 0.052 2.068 

Proportion of road <40 mph (1, --) -0.183 -4.013 -- -- -- -- -- -- -- -- -- -- 

Proportion of divided road length (1, --) -- -- 0.137 1.874 -- -- -- -- -- -- -- -- 

Intersection density (--, 1) -- -- -- -- -- -- -- -- -1.251 -4.440 -- -- 

Avg. bike lane length (1, --) -- -- -0.029 -2.877 -- -- -- -- -- -- -- -- 

Land-use and Built Environment Attributes             

Proportion of institutional area (1, --) -- -- -- -- 0.384 2.063 -- -- -- -- -- -- 

No. of restaurants (--, 1) -- -- -- -- -- -- -- -- -0.113 -4.129 -- -- 

No. of shopping centers (1, 1) 0.048 1.972 -- -- 0.048 1.972 -- -- -- -- -0.098 -2.250 

Over dispersion (3, --) 0.106 1.728 0.058 4.709 0.082 4.187 -- -- -- -- -- -- 

Parameter for Disaggregate Level 

Propensity Sum (2, 1) 
0.993 46.791 1.007 38.112 1.007 38.112 0.076 2.645 0.076 2.645 0.076 2.645 

Unobserved Heterogeneity             

Constant (𝜽𝑖𝑙) (3) 0.077 2.136 0.159 5.721 0.158 3.490 0.077 2.136 0.159 5.721 0.158 3.490 

Proportion of commercial area (1) 0.188 3.605 0.188 3.605 0.188 3.605 0.188 3.605 0.188 3.605 0.188 3.605 

LL = -24,169.028 

BIC = 48,829.406 

Number of parameters = 74 

Note: “--” denotes variables are not significant at 90% confidence interval; *Numbers in the parenthesis denote the number of parameters estimated; FII=Fatal 

and incapacitating injury, NII=Non-incapacitating injury, PI= Possible injury, and NI= No injury. 
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The model results show that late nighttime period increases risk for sideswipe crashes while 

peak morning and peak evening time periods reduce angular and sideswipe crashes. Among the 

seasonal effects, winter, spring, and autumn reduce the possibility of sideswipe crash type 

compared to other crash types.  

Our model estimates indicate that under dark-lighted conditions, the propensity of 

sideswipe crashes is higher than for other crash types. On the other hand, dark-unlighted condition 

is associated with high risk of angular crash type (as found in Neyens and Boyle, 2007). The results 

indicate that under dark conditions there is an overall increase in angular and sideswipe crashes. 

The result might be highlighting how vehicles are less likely to be visible in turning movements 

and thus might possibly result in higher angular and sideswipe crashes.  

 

5.3.2 Crash Severity Component  

The threshold parameters demarcate the various severity categories and do not have any 

substantive interpretation.  

In the severity model, among driver and vehicle attributes, as expected, driving under 

influence, distracted conditions and presence of passengers in the vehicle contribute to higher 

severity likelihood across all crash types (see Das et al., 2009; Marcoux et al., 2018; Paleti et al., 

2010; Weiss et al., 2014; Yasmin and Eluru, 2013 for similar findings). 

With regards to roadway attributes, as expected, lower posted speed limit is associated with 

lower severity across all the crash types. The presence of a curb shoulder reduces injury severity 

risk for angular crashes possibly by additional reduction of vehicle maneuvering speed (Jiang et 

al., 2013). The results also show that wet pavement surface condition increases the severity 

propensity for sideswipe crashes.  

The impact of time of the day variables offers different trends by crash type. Rear end and 

angular crashes occurring in the late nighttime period are likely to result in severe injury. The 

vehicle operating speeds are likely to be higher in these time periods and are thus likely to result 

in severe crashes (see Marcoux et al., 2018 for similar findings). Angular crashes in the off-peak 

morning time period are also likely to result in severe injuries. However, rear end crashes during 

peak evening period are likely to result in less severe crashes (as found in Behnood and Mannering, 

2019). The higher traffic volume and lower speeds during peak hours are likely to contribute to 

less severe angular crashes.  

Among several weather attributes considered, rainy conditions and fog and wind conditions 

exhibit a discernible impact on crash type-based severity. In rainy weather conditions, sideswipe 

crashes are likely to result in reduced severity. In foggy and windy weather, we observe a reduced 

severity risk for angular crashes. These findings perhaps reflect the increased driver caution while 

driving in adverse weather conditions (Abrari Vajari et al., 2020; Uddin and Huynh, 2020). 

 

5.4 Aggregate Level Attributes  

 

5.4.1 Count Component 

The constant terms in the crash frequency by crash type do not have substantive interpretation after 

including independent variables.  

Among the several roadway and traffic factors, AADT variable offers expected results. 

TAZs with higher AADT are more likely to experience increased risk across all crash types (see 

Alarifi et al., 2017; Alhomaidat et al., 2020; Cai et al., 2019; Huang et al., 2016; Ivan et al., 2023 

for similar results). The parameters for average inside shoulder width show positive association 
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with crash frequency for rear end crash type. The presence of inside shoulder may provide shelter 

for emergency stops. However, stopped vehicles may be hazardous and contribute to rear end 

crashes (Stamatiadis et al., 2009). The variable associated with proportion of divided road length 

shows positive effect on angular crash frequency. This finding is consistent with several previous 

studies (Bhowmik et al., 2019, 2018). The impact of posted speed limit proportions across the TAZ 

offers intuitive results. An increase in the proportion of <40 mph roads in a TAZ reduces the risk 

of rear end crashes. The average bike lane length in the zone is negatively associated with angular 

crash frequency. The result is quite interesting and is supportive of addition of bike infrastructure 

in the zones (Pervaz et al., 2022).  

Among the land-use characteristics, the results found that a higher proportion of 

institutional area in the zone increases the propensity for sideswipe crashes.  

With regards to the built environment attributes explored, the number of shopping centers 

was found to be strongly associated with increased rear end and sideswipe crashes. These results 

serve as additional surrogate variables for traffic intensity (Bhowmik et al., 2022, 2021b).  

 

5.4.2 Severity Proportion Component 

The threshold parameters demarcate the various severity proportion categories and do not have 

any substantive interpretation.   

Among roadway and traffic factors, it is interesting to note that AADT has no impact on 

severity proportion. The zones with a higher proportion of interstate-expressways indicate a higher 

risk of severe rear end crashes. While the result might be counter-intuitive, it is potentially 

reflecting the presence of ramps close to interstates and signalized intersections near these ramps 

where rear end crashes are likely to occur as drivers transition from high-speed facilities to low-

speed roadways. On the other hand, a higher proportion of local roads is associated with lower 

severity proportions for sideswipe crashes possibly due to the lower vehicle operating speed 

(Pervaz et al., 2023; Yasmin and Eluru, 2018). As the average number of lanes increase in a zone, 

the propensity for rear end crash severity proportion is likely to reduce. The inner and outer 

shoulder width variables offer contrasting results. The inner shoulder width is associated with 

lower severity risk for angular and side swipe crash types. The outer shoulder width is associated 

with higher severity risk for sideswipe crashes. These results while interesting might require 

further analysis. In terms of intersection density, the findings indicate that severity proportions for 

angular crash type are likely to tend toward less severe crashes. The increased presence of 

intersections offers increased protection for turning movements and thus reduce injury severity in 

the event of a crash (Bhowmik et al., 2021b).  

Among built environment variables, an increased presence of restaurants is likely to reduce 

the severity proportion for angular crashes. In a similar manner, increased presence of shopping 

centers is associated with lower severity risk for sideswipe crashes. These findings, similar to crash 

occurrence, reflect increased traffic density and lower vehicle operating speed (Bhowmik et al., 

2021b; Yasmin and Eluru, 2018). 

 

5.5 Parameter for Disaggregate Level Propensity Sum 

The coefficients for the fixed propensity from the disaggregate level models in the count 

component and severity component are presented in the lower row panel of Table 2. The positive 

sign of the parameters for examined crash types in both count and severity proportion component 

indicates that a higher value of disaggregate level model propensity is likely to increase the number 

of crashes and the crash severity for rear end, angular and sideswipe crashes. The results clearly 
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highlight that the higher propensities for crash type and severity at the disaggregate level are 

significantly associated with the increase of the crash counts by crash type and severity at the 

aggregate level. It is also interesting to note that the impact of disaggregate propensity does not 

vary across the three crash types in the severity component.  

 

5.6 Unobserved Heterogeneity 

As described in the methodology section, the proposed model system can accommodate 

unobserved heterogeneity while estimating the models. In our estimation, we considered spatial 

correlation among crash records, and several other correlations such as correlations within crash 

count, within crash severity proportion, and between crash count and severity proportion for all 

the crash types explored in the analysis, and random parameter effects of the variables. The spatial 

correlation is estimated in the form of spatial variations for crash records in a zone through a 

common spatial correlation between all crash records (for similar crash type) from a zone. The 

unobserved heterogeneity variable constant presented in Table 2 corresponds to this common zone 

spatial correlation. The significant effect of this correlation parameter (𝜽𝑖𝑙) clearly highlights the 

presence of common unobserved factors across crash records of similar crash types in the same 

zone. We also parameterized the correlation parameter and tested for several independent 

variables. In our testing, we found a zonal variable – proportion of commercial area - exhibit 

significant unobserved correlation across crash records within the same zone. On the other hand, 

no statistically significant effect was recovered for unobserved correlations between crash counts 

and crash proportions by types and severity levels (𝜂), and random parameter effects (𝜻 and 𝝆) in 

our dataset for both non-integrated and proposed integrated model systems.  

 

5.7 Predictive Performance of the Model  

To demonstrate the applicability of the proposed model, we undertake a comparison exercise 

between the proposed integrated exogenous model with unobserved heterogeneity and the non-

integrated panel mixed NB-OPFS model by testing model performance on estimation and holdout 

samples. We compare the models by employing two measures of fit: mean absolute deviation 

(MAD) and mean squared prediction error (MSPE) (please see Bhowmik et al., 2018; Pervaz et 

al., 2023 for a detailed definition of these measures). The model with the lower values of MAD 

and MSPE provides better predictions for the observed data.  

Figure 2 presents the values of these measures for the proposed integrated exogenous 

model and the non-integrated panel mixed NB-OPFS model. From the figure, we observe that our 

proposed integrated model performs better than non-integrated model across most of the measures 

for all crash types. For rear end crash type, our proposed model performs better for all measures 

(for both estimation and validation samples). For angular and sideswipe crash types, our model 

shows better performance across most of the MAD and MSPE values. Though non-integrated 

system shows equal or lower deviation values across a few measures for angular (6 values out of 

20) and sideswipe (4 values out of 20) crash types, the differences are very marginal. In summary, 

the resulting goodness of fit measures clearly show the comparable performance of our proposed 

integrated model that considers both aggregate and disaggregate level crash attributes than 

traditional non-integrated model for estimating crashes by type and severity. 
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Figure 2: Predictive Performance of the Models across Crash Types for Estimation and Validation Datasets 
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5.8 Elasticity Analysis   

The model estimation results presented in Table 2 represent a joint interaction of aggregate and 

disaggregate level variables and do not directly provide the magnitude of the effects of the 

variables on crash count by crash type and severity. The actual magnitudes of the effect of the 

variables can be obtained by computing elasticity effects of the variables. The proposed model 

offers a unique framework to capture the information flow from disaggregate level into the 

estimation of aggregate level crash count by crash type and severity. Therefore, for elasticity 

computation, we intend to focus on showing the elasticity effects of disaggregate level variables 

by following the procedure demonstrated in Eluru and Bhat (2007). Following this procedure, the 

percentage change in the expected total zonal crash counts by crash type and severity caused by 

the change in the disaggregate level exogenous variable were computed. As all the exogenous 

variables in the disaggregate level are indicator variables, we obtain these changes by changing 

the value of the variable to one for the subsample of observations for which the variable takes a 

value of zero and to zero for the subsample of observations for which the variable takes a value of 

one. Specifically, the elasticity effects computed in this procedure are aggregated percentage 

elasticity based on the aggregated change and the overall shares of the sample.  

The computed elasticities are presented in Table 3 and Table 4. The reader would note that 

we considered the rear end crash type as the base category while allowing for the information flow 

from the disaggregate level MNL model. Therefore, the elasticity analysis in this section provides 

the results for angular and sideswipe crash types relative to rear end crash type. The results 

presented in Table 3 and Table 4 show the percentage change in the number of angular and 

sideswipe crashes respectively by different severity level due to the changes in the disaggregate 

level exogenous variable of interest.  

 

Table 3: Elasticity Effects for Angular Crash Type 

Variables 
%NI 

Crashes 

%PI 

Crashes 

%NII 

Crashes 

%FII 

Crashes 

%Total 

Crashes 

Driver and Vehicle Factors      

DUI related -2.51 2.48 5.64 9.50 0.00 

Distraction related  19.05 21.56 23.09 24.90 20.30 

With passengers  11.93 15.19 17.17 19.52 13.55 

Roadway Characteristics      

Posted speed limit (Base: 40-55mph)      

Posted speed limit<40 mph 20.24 19.54 19.12 18.61 19.89 

Posted speed limit>55 mph -27.45 -27.47 -27.48 -27.49 -27.46 

At intersection  252.11 249.22 247.28 245.04 250.64 

Curb shoulder 48.32 47.15 46.44 45.59 47.74 

Wet surface  -30.43 -30.43 -30.42 -30.42 -30.43 

Road Environmental and Weather Factors      

Time (Base: Off-peak evening, late evening)      

Late night (12:00-6:30) -1.10 1.11 2.47 4.10 0.00 

Peak morning (6:30-9:00) -12.81 -12.80 -12.81 -12.82 -12.81 

Off-peak morning (9:00-12:00) -0.66 0.66 1.47 2.43 0.00 

Peak evening (16:00-18:30) -14.07 -14.02 -14.00 -13.97 -14.04 

Light condition (Base: Day light, dawn/dusk)       

Dark lighted -- -- -- -- -- 

Dark not lighted 65.70 65.64 65.59 65.54 65.67 

Weather condition (Base: Clear)      

Rainy -- -- -- -- -- 

Fog and wind 13.46 -15.25 -28.51 -41.46 0.00 
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For example, in Table 3, the elasticity estimate for the DUI related variable indicates that 

driving under influence increases the fatal and incapacitating angular crash count by 9.50%. For 

this variable, we also find that the change in the crash counts for higher severity categories is 

greater than the change in the lower severity categories while demonstrating insignificant changes 

in the total angular crash count. To be specific, for angular crash type, the DUI related variable 

provides significant information flow for crash severity (from OP model component) while 

providing insignificant effect on total angular crash count (from MNL model component). These 

findings are consistent with the results presented in Table 2. The effects of all the variables 

presented in Table 3 and Table 4 can be interpreted in a similar manner for angular and sideswipe 

crash type respectively. 

 

Table 4: Elasticity Effects for Sideswipe Crash Type 

Variables 
%NI 

Crashes 

%PI 

Crashes 

%NII 

Crashes 

%FII 

Crashes 

%Total 

Crashes 

Driver and Vehicle Factors      

DUI related -50.26 -50.28 -50.28 -50.29 -50.27 

Distraction related  -46.42 -44.52 -43.69 -42.59 -46.12 

With passengers  -0.64 3.45 5.17 7.41 0.00 

Roadway Characteristics      

Posted speed limit (Base: 40-55mph)      

Posted speed limit<40 mph 18.49 17.48 17.06 16.52 18.33 

Posted speed limit>55 mph -- -- -- -- -- 

Wet surface  -30.66 -27.77 -26.53 -24.91 -30.20 

Road Environmental and Weather Factors      

Time (Base: Off-peak evening, late evening)      

Late night (12:00-6:30) 23.19 23.17 23.17 23.16 23.19 

Peak morning (6:30-9:00) -29.99 -30.01 -30.01 -30.02 -30.00 

Off-peak morning (9:00-12:00) -- -- -- -- -- 

Peak evening (16:00-18:30) -20.75 -20.75 -20.75 -20.75 -20.75 

Season (Base: Summer)      

Winter  -15.75 -15.75 -15.75 -15.75 -15.75 

Spring  -11.74 -11.74 -11.75 -11.75 -11.74 

Autumn  -17.53 -17.54 -17.54 -17.54 -17.54 

Light condition (Base: Day light, dawn/dusk)       

Dark lighted 16.78 16.79 16.79 16.78 16.78 

Dark not lighted -- -- -- -- -- 

Weather condition (Base: Clear)      

Rainy 0.86 -4.63 -6.83 -9.62 0.00 

Fog and wind -- -- -- -- -- 

  

By analyzing the elasticity results presented in Table 3 and Table 4, several important 

observations can be drawn. First, there are differences in the elasticity effects across the expected 

number of crashes for different crash types and severities. Second, the most significant variables 

affecting the expected number of total angular crashes are intersection location, dark unlighted 

condition, curb shoulder type, distracted driving, speed limit <40 mph road, driving with 

passengers as shown in Table 3. On the other hand, the most significant variables affecting the 

number of total sideswipe crashes are late night, lower speed limit road, dark lighted condition as 

shown in Table 4. Third, the most significant variables affecting the number of angular crash 

counts in the higher severity categories are distracted driving, driving with passengers, DUI 

driving, late night and off-peak morning (see Table 3). On the other hand, driving with passenger 
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increases the expected number of sideswipe crash counts in the higher severity categories (see 

Table 4). 

The results of the elasticity effect analysis highlight the influence of disaggregate level 

variables on overall crash frequency by type and severity. Traditional approaches that develop 

separate models for aggregate and disaggregate resolutions cannot identify any impact of 

disaggregate variables on crash frequency by type and severity. For instance, in our results, we 

highlight the impact of disaggregate level information such as driver behavior and vehicle features 

(such as DUI, and distraction related crashes), weather and environmental factors (such as crash 

timing, lighting and Fog/Wind) in estimating crash frequency. The multifaceted information 

available from the integrated approach can contribute to the implications of the road safety policy 

by providing traffic engineers, planners, vehicle manufacturers, psychologists, environmentalists, 

and law enforcement agencies to adopt integrated and coordinated decisions. For example, results 

indicate that intersection locations contribute to a higher number of crashes of the angular type. 

Therefore, intersection improvement policies such as providing dedicated/exclusive turning lanes, 

signal and signage improvement scheme, improvement of driving behavior for yielding to the 

signals and signages in the zone might help to mitigate this type of crash. Furthermore, policies 

such as targeted enforcement, road safety awareness campaigns and large-scale traffic safety 

education programs can be adopted in the zones with a higher shared transport use, higher DUI 

and distraction driving rates. This policy initiative would not be possible from a non-integrated 

model system. Similarly, roadway improvement and maintenance programs such as lighting 

improvement can be accelerated in the zones to improve visibility for safer traffic movement, 

particularly during dark conditions. Overall, a better understanding of the potential crash 

contributing factors from different analysis levels and their possible interactions can lead to better 

policy decisions and increase the effectiveness of various road safety interventions. 

 

6. CONCLUSIONS 

The recent development of integrated multi-resolution approaches has enriched the transportation 

safety literature by allowing the safety analysts to capture the impacts of the variables from 

disaggregate crash record data within aggregate crash models. These approaches augment the 

traditional aggregate crash model systems with rich observed information available in the crash 

records while also accommodating for unobserved effects. A recent study illustrated this 

framework incorporating disaggregate severity data with crash frequency models by severity. The 

current study builds on the previous effort through a unified framework that allows for the 

information flow of observed and unobserved variables from the disaggregate level crash type and 

crash severity model components into the aggregate level crash frequency model. The approach 

involves summing up the crash propensities of disaggregate level crash type and crash severity 

models within the aggregate resolution and adding the generated values as new variables in the 

aggregate level propensity estimation. In this study, we employed a panel mixed NB-OPFS 

framework at the aggregate level model to jointly examine crash frequency by crash type and 

severity and the MNL and pooled OP models at the disaggregate level to analyze the crash type 

and crash severity, respectively. In the panel mixed NB-OPFS framework, the NB component 

models the number of crashes by type and the OPFS component determines the proportion of each 

severity in the pooled dataset for a zone. The introduction of the disaggregate measures as a 

composite score in aggregate models can be accommodated exogenously or endogenously. In the 

exogenous approach, the disaggregate level parameters are fixed and only the parameters on the 

composite scores are estimated. In the endogenous approach, the disaggregate model parameters 
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are also allowed to vary. The variation that offers the superior data fit is preferred. The empirical 

analysis was conducted using 2019 crash data drawn from the City of Orlando, Florida. We 

considered three crash types: rear end, angular and sideswipe over 300 traffic analysis zones 

(TAZs) for the analysis. The disaggregate model component considered crash specific factors, 

vehicle and driver factors, roadway attributes, road environmental and weather information. For 

aggregate level analysis, independent variables including roadway and traffic characteristics, land-

use attributes, built environment factors, and sociodemographic characteristics were considered. 

For the empirical assessment of the proposed integrated framework, the exogenous and 

endogenous model systems were compared with the non-integrated model system (composed of 

MNL, and a pooled OP model for three crash types at disaggregate level, and a panel mixed NB-

OPFS model for jointly estimating aggregate level crash count by crash type and severity). The 

study results clearly highlighted the improved performance of the proposed integrated models over 

non-integrated model system. Within the integrated model approaches, exogenous model 

outperformed the endogenous model in terms of BIC value. Finally, the exogenous model was 

further improved by accommodating unobserved heterogeneity. We compared the performance of 

the proposed integrated model with the non-integrated model system using several predictive 

performance measures. The measures clearly highlighted the improved performance of our 

proposed integrated model in estimation and holdout samples. Further, an elasticity exercise was 

conducted to illustrate how the influence of disaggregate level crash attributes can be examined on 

the aggregate level crash count by crash type and severity analysis. 

This study is not without limitations. The proposed integrated approach requires substantial 

effort for data compilation in the region. The compilation can also be cumbersome as data from 

various sources are needed leading to the handling of large datasets and substantial data processing 

and coding resources. In addition, the model framework requires systematic analysis i.e., the 

approach should start from disaggregate level analysis and then integrated with the aggregate level 

analysis. Further, the current study considered one year crash data for the empirical analysis of the 

proposed framework as we obtained a good number of crash records from one year data for the 

study area. It would be useful to consider the data from multiple years while also accounting for 

potential temporal heterogeneity of the parameter estimates within the proposed integrated 

framework in future research efforts 
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APPENDIX 

 

Table A.1: Results of the Disaggregate Level Models (MNL and Pooled OP) with Net Variable Effects 

Variables 

MNL Model Propensity  

(Base: Rear End) 
OP Model Propensity 

Angular Sideswipe  Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant (2, --) * -2.448 -36.557 -0.733 -13.750 -- -- -- -- -- -- 

Threshold Parameters           

Threshold between NI-PI (--, 3) -- -- -- -- 0.671 29.019 0.372 9.125 1.299 36.120 

Threshold between PI-NII (--, 3) -- -- -- -- 1.604 3.130 1.103 9.482 1.937 7.281 

Threshold between NII-FII (--,1) -- -- -- -- 2.548 1.827 2.047 1.827 2.882 1.827 

Driver and Vehicle Factors           

DUI related (if yes 1, otherwise 0) (1, 1) -- -- -0.689 -2.512 0.525 4.419 0.525 4.419 -- -- 

Distraction related (if yes 1, otherwise 0) (2, 1) 0.190 3.050 -0.544 -8.880 0.238 8.953 0.238 8.953 0.238 8.953 

With passengers (if yes 1, otherwise 0) (1, 1) 0.133 2.648 -- -- 0.336 14.847 0.336 14.847 0.336 14.847 

Roadway Characteristics           

Posted speed limit (Base: 40-55mph)           

Posted speed limit<40 (2, 1) 0.199 3.750 0.181 3.982 -0.082 -3.574 -0.082 -3.574 -0.082 -3.574 

Posted speed limit>55 (1, --) -0.314 -2.865 -- -- -- -- -- -- -- -- 

At intersection (if yes 1, otherwise 0) (1, --) 2.717 53.507 -- -- -- -- -- -- -- -- 

Curb shoulder (if yes 1, otherwise 0) (1, 1) 0.504 9.985 -- -- -- -- -0.133 -3.063 -- -- 

Wet surface (if yes 1, otherwise 0) (2, 1) -0.345 -4.348 -0.341 -4.791 -- -- -- -- 0.307 2.237 

Road Environmental and Weather Factors           

Time (Base: Off-peak evening, late evening)           

Late night (12:00-6:30) (1, 1) -- -- 0.211 2.410 0.232 4.629 0.232 4.629 -- -- 

Peak morning (6:30-9:00) (1, --) -- -- -0.337 -4.832 -- -- -- -- -- -- 

Off-peak morning (9:00-12:00) (--, 1) -- -- -- -- -- -- 0.139 2.228 -- -- 

Peak evening (16:00-18:30) (1, 1) -- -- -0.220 -3.785 -0.086 -2.460 -- -- -- -- 

Peak morning and peak evening (1, --) -0.163 -3.009 -- -- -- -- -- -- -- -- 

Season (Base: Summer)           

Winter (1, --) -- -- -0.163 -2.666 -- -- -- -- -- -- 

Spring (1, --) -- -- -0.120 -1.990 -- -- -- -- -- -- 

Autumn (1, --) -- -- -0.182 -2.953 -- -- -- -- -- -- 

Light condition (Base: Day light, dawn/dusk)            

Dark lighted (1, --) -- -- 0.160 2.761 -- -- -- -- -- -- 

Dark not lighted (1, --) 0.505 2.789 -- -- -- -- -- -- -- -- 

Weather condition (Base: Clear)           
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Variables 

MNL Model Propensity  

(Base: Rear End) 
OP Model Propensity 

Angular Sideswipe  Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Rainy (--, 1) -- -- -- -- -- -- -- -- -0.455 -2.421 

Fog and wind (--, 1) -- -- -- -- -- -- -2.946 -9.928 -- -- 

LL   -11,142.009 -10,289.086 

BIC  22,492.842 20,749.027 

Number of parameters 22 18 

Note: “--” denotes variables are not significant at 90% confidence interval; *Numbers in the parenthesis denote the number of parameters estimated; FII=Fatal 

and incapacitating injury, NII=Non-incapacitating injury, PI= Possible injury, and NI= No injury. 
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Table A.2: Result of the Panel Mixed NB-OPFS Model with Net Variable Effects 

Variables 

Count Component Severity Proportion Component 

Rear End Angular Sideswipe Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Constant (3, --) * -0.097 -0.192 -1.094 -2.142 -1.457 -2.909 -- -- -- -- -- -- 

Threshold Parameter             

Threshold between P_NI-P_PI (--, 2) -- -- -- -- -- -- 0.152 2.646 0.152 2.646 1.166 8.365 

Threshold between P_PI-P_NII (--, 3) -- -- -- -- -- -- 1.035 3.409 0.942 4.716 1.811 4.733 

Threshold between P_NII-P_FII (--, 1) -- -- -- -- -- -- 1.903  2.433 1.811 2.433 2.679 2.433 

Roadway and Traffic Characteristics             

AADT (1, --) 0.244 5.101 0.244 5.101 0.244 5.101 -- -- -- -- -- -- 

Proportion of interstate-expressways 

(--, 1) 
-- -- -- -- -- -- 0.279 2.597 -- -- -- -- 

Proportion of arterial road (--, 1) -- -- -- -- -- -- 0.162 1.980 -- -- -- -- 

Proportion of local road (--, 1) -- -- -- -- -- -- -- -- -- -- -0.770 -2.031 

Avg. no. of lanes (--, 1) -- -- -- -- -- -- -0.139 -3.213 -- -- -- -- 

Avg. inside shoulder width (1, 1) 0.055 5.110 -- -- 0.055 5.110 -- -- -0.027 -3.832 -0.027 -3.832 

Avg. outside shoulder width (1, 1) -0.066 -2.155 -- -- -- -- -- -- -- -- 0.044 1.763 

Proportion of road <40 mph (1, 1) -0.275 -1.955 -- -- -- -- -- -- -- -- -0.242 -1.944 

Proportion of road >55mph (1, --) -- -- -0.434 -2.000 -- -- -- -- -- -- -- -- 

Proportion of divided road (1, --) 0.408 3.990 0.408 3.990 0.408 3.990 -- -- -- -- -- -- 

Intersection density (1, 1) -- -- 1.012 2.518 1.012 2.518 -- -- -1.224 -4.201 -- -- 

Avg. bike lane length (1, --) -- -- -0.035 -2.165 -- -- -- -- -- -- -- -- 

Land-use Attributes             

Proportion of institutional area (1, --) -- -- -- -- 1.080 1.997 -- -- -- -- -- -- 

Proportion of commercial area (--, 1) -- -- -- -- -- -- -0.157 -1.903 -- -- -- -- 

Land-use mix (1, --) 0.550 2.992 -- -- -- -- -- -- -- -- -- -- 

Built Environment Attributes             

No. of education centers (1, --) 0.083 2.147 -- -- -- -- -- -- -- -- -- -- 

No. of restaurants (1, 1) 0.256 7.420 0.256 7.420 0.256 7.420 -- -- -0.076 -2.841 -- -- 

No. of shopping centers (1, 1) 0.132 2.914 -- -- 0.132 2.914 -- -- -- -- -0.070 -1.823 

Sociodemographic Factors             

NMT transport (1, --) 0.133 5.510 0.133 5.510 0.133 5.510 -- -- -- -- -- -- 

Proportion of White-American 

population (--, 1) 
-- -- -- -- -- -- -0.395 -3.493 -- -- -- -- 

Proportion of African American 

population (1, 1) 
-- -- 0.698 3.958 -- -- -- -- 0.330 3.418 0.330 3.418 

Over dispersion (3, --) 0.464 6.102 0.412 8.674 0.563 8.566 -- -- -- -- -- -- 
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Variables 

Count Component Severity Proportion Component 

Rear End Angular Sideswipe Rear End Angular Sideswipe 

Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

LL = -3,239.540 

BIC = 6,744.675 

Number of parameters = 40 

Non-Integrated Models 

Total LL = -24,670.635 

Total BIC = 49,872.460 

Total number of parameters = 80 

Note: “--” denotes variables are not significant at 90% confidence interval; *Numbers in the parenthesis denote the number of parameters estimated; FII=Fatal 

and incapacitating injury, NII=Non-incapacitating injury, PI= Possible injury, and NI= No injury. 


