A Comprehensive County Level Model to Identify Factors Affecting Hospital Capacity and Predict Future Hospital Demand

Tanmoy Bhowmik*

Post-Doctoral Scholar Department of Civil, Environmental & Construction Engineering, University of Central Florida Tel: 407-927-6574; Fax: 1-407-823-3315; Email: <u>tanmoy78@knights.ucf.edu</u> ORCiD number: 0000-0002-0258-1692

Naveen Eluru

Professor Department of Civil, Environmental & Construction Engineering, University of Central Florida Tel: 407-823-4815; Fax: 407-823-3315; Email: <u>naveen.eluru@ucf.edu</u> ORCiD number: 0000-0003-1221-4113

*Corresponding author

Supplemental Material

A1. Non-COVID Hospitalization Model

<u>COVID-19 Related Factors</u>: As hypothesized, we find that an increase in weekly COVID transmission rate in the county results in a decrease in the non-COVID hospitalization rate. The result highlights how COVID-19 cases are affecting the general population's perception of hospital safety. It is also possible that hospitals are delaying hospitalization of other non-emergency patients to allow for requisite beds for COVID patients.

<u>Demographics</u>: As expected, counties with higher percentage of young individuals are less likely to experience higher non-COVID hospitalization rate. Similar to the COVID hospitalization trend, we find increased presence of minority population including Hispanic and African-American people in a county significantly increases hospitalization risk. Finally, our results show that women usually have a high hospitalization rate compared to men.

<u>Health Indicators</u>: Consistent with previous research, we also find that people suffering from preexisting chronic diseases including cancer and HIV significantly increase the risk of being hospitalized.

<u>Spatial Factors</u>: With respect to spatial factors, we observe that mid-west region is more likely to have higher number of non-COVID hospitalization rates relative to other regions.

<u>Temporal Factors</u>: Similar to the COVID hospitalization model, we tested for the influence of temporal variables on the non-COVID hospitalization rate. We did not find any influence of the indicator variable from October 30th in the model. However, we did find the indicator variable from December 25th providing a mirror image of the results from COVID hospitalization rates. To elaborate, the variable reveals a negative coefficient indicating a reduced likelihood of the number of non-COVID patients across the country since 25th December. This variable directly reflects the influx of COVID patients reducing hospital capacity for non-COVID patients.

<u>Correlation Factors</u>: Similar to the COVID hospitalization rate, we also find the presence of common unobserved factors influencing county non-COVID hospitalization rate.

A2. ICU Usage Model (COVID and Non-COVID)

Discussion about the ICU usage model will be provided upon request from the authors.

	COVID		Non COVID	
Parameter	Estimate	t-statistics	Estimate	t-statistics
Intercept	-11.038	-8.612	-20.854	-10.978
Covid-19 Related Factors				
COVID case per 100 people, with 1 week lag	**		-0.056	-3.044
COVID case per 100 people, with 2 weeks	0.659	13.045	-0.054	-2.859
x Effect in Mid-West Region	-0.260	-4.440		
x Effect in South Region	-0.324	-5.762		
x Effect in North-east Region			-0.169	-2.018
% difference from 3 week moving average	0.037	3.347		
x Effect in Mid-West Region	0.022	1.732		
Weekly Covid-19 cases higher than the				
moving average (base is covid-19 cases same	0.017	2.346		
or lower)				
Mobility Trends				
Ln (Daily Average Exposure), 2 weeks lag	0.085	5.430		
x Effect Since 2nd Wave started (October 30 th)	0.036	10.382		
Demographics				
Young people percentage			-0.043	-4.555
Hispanic people percentage	0.015	9.344	0.013	5.028
African American percentage	0.013	7.538		
x Effect Since 2nd Wave started (October	-0.002	-2.319		
	0.120	10.620	0.206	12.029
Income inequality ratio	0.110	3.634	0.200	12.038
Health Indicators	0.110	5.034		
I n (number of cardiovascular patients per				
1000 Medicare beneficiaries)	0.372	4.353	0.887	6.721
Ln (HIV rate per 100K People)			0.346	11.304
Ln (cancer rate per 100K People)	0.397	1.897	1.228	4.044
Spatial Factors				
Region (Base: South, Mid-west, Pacific)				
West region			0.443	4.599
North East region				
x Effect Since 2nd Wave started (October 30 th)	0.064	1.777		
Temporal Factors				
Effect Since 25 th December			-0.021	-2.095
Correlations	•	•	•	•
σ^2	1.060	49.154	1.535	37.862
ρ	0.931	468.920	0.982	325.480
Φ	0.848	260.942	0.881	267.780

 Table A.1: ICU Model Results

** the variable is insignificant at 90% significance level.

Figure A.1: A Representation of the Hospitalization Trend Across South, North-East and Mid-West region

Figure A.2: Assumed Average Exposure Trend in Future

Figure A.3: Future Hospital Capacity Across Mod-West and South Regions Based on the Hypothetical Scenarios

Figure A.4: Future ICU Capacity Across Mod-West and South Regions Based on the Hypothetical Scenarios

Figure A.5: Future Hospital Capacity at State level Based on the Hypothetical Scenarios